• Title/Summary/Keyword: Fuel injection pressure

Search Result 710, Processing Time 0.024 seconds

Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines (커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.

A Study on the Behavior Characteristics of Diesel Spray by Using a High Pressure Injection System with Common Rail Apparatus

  • Yeom, Jeong-Kuk;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1371-1379
    • /
    • 2003
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 22 MPa to 112 MPa using a high pressure injection system (ECD-U2). Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

simulation of the fuel-injection system in a diesel engine (디이젤 기관 연료분사계의 시뮬레이션)

  • 채재우;오신규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-54
    • /
    • 1985
  • Recently, the problem of exhaust gas pollution is increasingly being aggravated by the active use of the Diesel engine. For the fuel-injection system which affects the composition of exhaust gas from the Bosch type single-hole nozzle in the Diesel engine, a mathematical model was set up to study pressure variations in the high pressure pipe, the injection rate, and the needle lift. The fundamental equations of the mathematical model have been solved by the Newton Raphson Method applying the Finite Diffrence Method. The effective stroke of the injection pump plunger due to a change in engine rpm was calculated by the measurement of Control Rack, Pinion, and Plunger sizes and by the use of Characteristic Curve of Governor. The computed results for the pressure variations in the high pressure pipe and needle lift at 800 rpm and 1000 rpm are in good agreement with experimental ones in general. By a developed program, the effects of other various parameters will by calculated for the performance of the fuel-injection system.

  • PDF

A Numerical Study on Combustion and Emission Characteristics in Heavy Duty Diesel Engine with Post Injection (후분사를 적용한 대형디젤엔진의 연소 및 배기 특성에 관한 수치해석적 연구)

  • Choi, Minsu;Bae, Jaeok;Suh, Hyunuk;Lee, Byunghwa;Jeon, Chunghwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.193-201
    • /
    • 2014
  • A numerical study has been carried out to analyze the combustion characteristics in heavy duty diesel engine with post injection for reducing NO emission. For verification of numerical study results, calculated cylinder pressure was matched to experimental data. In this study, post injection timing and amount of post injection were modified as parameters, but the total amount of injection fuel was maintained. As the results, maximum cylinder pressure increases above minimum 2% by post injection and end of pressure curve is decreased rapidly. The more dwell time and amount of post injection fuel are, the more pressure drop occurs. And trade-off relation of NO and soot are appeared. In the results, NO was reduced without deterioration of cylinder pressure under condition of $10^{\circ}$ CA dwell time and main 60%, post 40% fuel portion.

A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine (디젤엔진 연료계통의 분사특성에 관한 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

A Study on the Behaviour of Ultra-High Pressure Diesel Spray by Electronic Hydraulic Fuel Injection System(II) (전자유압식 분사계에 의한 초고압 디젤분무의 거동에 관한 연구(II))

  • 장세호;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.182-190
    • /
    • 1998
  • Behaviour of ultra-high pressure diesel spray in a constant-volume pressure chamber was studied with injection pressure ranging from 20 to 160㎫. Sprays were observed by the right angle scattering method. As a result, the spray tip penetration is first proportional to a time, and after that, it is proportional to 0.52 of the time during at the time of injection pressure and back pressure increase. An empirical correlation was made for the parameters of injection pressure, air-fuel density ratio, spray tip distance, spray angle, jet angle of spray and max. spray width.

  • PDF

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.

Experimental Evaluation of EGR and Fuel Injection Pressure on Combustion, Size-resolved Nano-particle and NOx Emissions Characteristics in an Advanced Light-duty Diesel Engine (승용 디젤 엔진의 배기가스재순환 및 연료 분사 압력 제어전략에 따른 연소, 입자상 물질 및 질소 산화물 배출 특성에 관한 연구)

  • You, Jung Been;Ko, Ahyun;Jang, Wonwook;Baek, Sungha;Jin, Dong Young;Myung, Cha-Lee;Park, Simsoo;Han, Jung Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.8-15
    • /
    • 2014
  • In order to satisfy stringent future emission regulation in diesel engines, systematic approaches to mitigate the harmful exhaust emissions were developed, such as engine hardware, fuel injection equipment, engine control, and after-treatment system. In this study, to improve the nano-particle and NOx emissions from a state-of-the-arts diesel engine, effect of various EGR and fuel injection pressure with combustion analysis were evaluated. Size-resolved nano-particle and NOx emissions showed trade-off characteristics with various EGR rate and increment of fuel injection pressure.

Study on Simulation of Fuel Injection Nozzle for Marine Medium Speed Diesel Engine (선박용 중속디젤엔진 연료분사노즐 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-47
    • /
    • 2013
  • This study was carried out to improve the design of fuel injection nozzle for marine medium speed diesel engine. For this purpose, fuel injection nozzle was modeled and simulated using CATIA V5R19 and FLUENT & MSC Nastran. Analyses of flow and heat transfer, respectively, were performed to find the optimal design of fuel injection nozzle. As the results, big pressure drop, which may lead to cavitation damage, was occurred at inlet of fuel injection hole with diameter 0.3mm. Furthermore, it was confirmed that the increase of mean temperature of fuel injection nozzle was almost a half in comparison with that of fuel injection nozzle tip.