• Title/Summary/Keyword: Fuel injection pressure

Search Result 708, Processing Time 0.027 seconds

A Computation study on Characteristics of Transient Injection of Pintle-type Injector for Direct Injection of LPG (LPG 연료의 직접 분사를 위한 핀틀타입 인젝터의 비정상 분무 특성에 관한 수치해석)

  • Choi, S.H.;Hwang, S.S.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.15-23
    • /
    • 1999
  • The use of LPG as clean fuel for Diesel engine is very attractive way to reduce soot and NOx emission. In this study, a numerical study has been done to know the transient behavior of LPG fuel in chamber pressures which is held at a pressure above (0.37MPa)and below(0.15MPa)the fuel vapor pressure. Results show that the vortex formed within the start of injection at the leading edge of the spray cone and was most apparent for 0.15MPa chamber pressure case. The high speed photographs and model results showed a narrower cone angle during the quasi-steady spray period at the 0.37MPa chamber pressure compared to the 0.15MPa case. And it can be shown that more realistic vaporization process is necessary to predict the spray length well.

  • PDF

A Study on the Characteristics of Accumulator Type Fuel Injection System with Spool Valve (스풀밸브를 이용한 축압식 연료분사계의 작동특성에 관한 연구)

  • Choi, Y.H.;Lee, J.H.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Fuel injection system is very important in diesel combustion. Recently electronic control of fuel injection system and common rail systems are introduced to reduce the emission and to increase the energy efficiency from diesel engine by control of the injection timing and duration. In this study, evaluation possibility of the system for electronic control by spool valve, one of the accumulator type injection systems with spool valve using solenoid was composed and the operating characteristics were investigated to evaluate the effects of spring coefficient, initial spring force, solenoid driving time, fuel supply pressure on the injection timing and duration. We could confirm the capability that diesel injection was electronically controlled by spool valve.

  • PDF

A Study on Evaporation Characteristics and Concentration Distribution of LPG fuel using Light Extinction Method (광흡수법을 이용한 LPG 연료의 증발특성 및 연료 농도 분포에 관한 연구)

  • Kim, D.K.;Cho, G.B.;Oh, S.M.;Choi, K.N.;Jeong, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.708-714
    • /
    • 2001
  • Although LP gas has lots of advantages, there has been limitation in application for automotive engine due to the several disadvantages, such as power decrease, complex fuel supply unit, and back fire etc. However LP gas direct injection engine has possibility to solve the problems above mentioned. LEM(Light Extinction Method) was employed for analysis of spacial and temporal distribution of LP gas which is directly injected into combustion chamber under various pressure and temperature conditions. The results from CVC(Constant Volume Chamber) were compared to those of RICEM(Rapid Induction, Compression and Expansion Machine) which simulate early- and late injection of direct injection engine. LPG fuel spray is affected by temperature and pressure in evaporation characteristics but it is more benefit to direct injection engine in every way such as, fuel distribution, evaporating speed and well wetting reduction.

  • PDF

Experimental Study on Supersonic Combustor using Inclined Fuel Injection with the Cavity, Part 2 : Pressure Measurement (공동 상류 경사 분사를 이용한 초음속 연소기의 실험적 연구, Part 2 : 압력 측정)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated at the trailing edge of the cavity and reflects off the top and bottom wall. For non-reacting flow, static pressures in low equivalence ratio are similar to those in no fuel injection. As equivalence ratio is increased, static pressures are increased in the duct. In the similar equivalence ratio, static pressures are increased when total enthalpy is decreased. For reacting flow, the flame is occurred near the cavity. The combustion is weak locally in the middle of the duct. The up and down pressure distribution in the duct means that the supersonic combustion is generated.

  • PDF

Performance Simulation for the Variation of Fuel Injection Nozzle Configurations in Medium Speed Diesel Engine (중형 디젤 엔진의 연료분사노즐 형상에 따른 성능 해석 연구)

  • Kim, Ki-Doo;Youn, Wook-Hyun;Kim, Byong-Seok;Ha, Ji-Soo;Ahn, Kwang-Hean;Kim, Ju-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.662-668
    • /
    • 2006
  • The effects of fuel injection nozzle hole on the NOx emission and fuel oil consumption of medium speed diesel engine HYUNDAI HiMSEN 6H21/32 engine are investigated by engine performance simulation. The results of performance simulation are verified by experimental results of NOx omission fuel oil consumption, cylinder pressure, and heat release rate according to the variation of the number of fuel injection nozzle hole and engine load. The performance simulations are also carried out to optimize the fuel injection nozzle of 6H21/32 engine in respect to the NOx emission and fuel oil consumption. The engine performance measurements are performed to verify the results of performance simulation and to investigate the effects of fuel injection nozzle on engine performance. The results of measurement indicate that significant NOx reduction can be achieved with minimum deterioration in fuel oil consumption by optimizing the geometry of fuel injection nozzle on 6H21/32 engine.

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Oxygenated Blending Fuel (압축착화 엔진에서 함산소 혼합연료의 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Chon, Moo-Soo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.61-66
    • /
    • 2009
  • An experimental investigation was conducted to analyze the effects of biodiesel-ethanol and biodiesel-diesel blended fuels on the characteristics of combustion and exhaust emissions, and size distributions of particulate matter in a single cylinder diesel engine. The three types of test fuel were biodiesel and two blended fuels which were added ethanol and diesel by 20 % volume based fraction into biodiesel, respectively. In this study, the injection rate, combustion pressure, exhaust emissions and size distributions of particulate matter were measured under various injection timings and injection pressures. The experimental results show that biodiesel-ethanol blended fuel has lengthened ignition delay and low combustion pressure in comparison with those of biodiesel and biodiesel-diesel blended fuel even if all fuels indicated similar trends of injection rate under equal injection pressures. In addition, the ethanol blended fuel significantly reduced nitrogen oxidies (NOx) and soot emissions. And then the size distribution of particulate matters shows that blended fuels restrain the formation of particles which were beyond the range of 150nm comparison with biodiesel fuel.

Effects of pilot injection timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with Bio-diesel blended fuel (바이오디젤 혼합 연료에 커먼레일 디젤기관에서 예비 분사시기가 연소 및 배기 특성에 미치는 영향)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2573-2578
    • /
    • 2014
  • An experimental study was performed to investigate the characteristics of combustion pressure and exhaust emissions when the pilot injection timing and EGR rate were changed in a CRDI 4-cylinder diesel engine using bio-diesel blended fuel. The pilot injection timing and EGR rate have a significant impact on the combustion and emission characteristics of diesel engine. In this study, the pilot injection timing and EGR rate variation were conducted to 2000rpm of engine speed with fuel of bio-diesel blended rate 20%. In these experimental results, IMEP was shown maximum pressure at pilot injection timing BTDC$10^{\circ}$ combustion pressure and heat release rate were decreased in proportion to increase of EGR rate under the same pilot injection timing conditions. The NOx emission was decreased with increasing the EGR rate without influence on pilot injection timing. However, soot emission was reduced to a minimum at pilot injection timing BTDC$20^{\circ}$.

Study of the effects of injector cleaning on the exhaust gases in a common rail diesel engine (커먼레일 디젤엔진의 인젝터 클리닝이 배기가스에 미치는 영향에 관한 연구)

  • Cho, Hong-Hyun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5980-5987
    • /
    • 2014
  • As a response to exhaust gas regulations, the electronic control system was applied to the diesel engine. The injected fuel mass and injection timing are accurately controlled using it, and the fuel efficiency and the engine output are significantly increased. In addition, the noise and the vibration of vehicles are decreased. To maintain the optimal performance of an electronic control diesel engine, it is important to control the fuel injection pressure accurately using the fuel pressure regulator. When the fuel pressure regulator is not worked normally, the failure phenomena (starting failure, staring delay, accelerated failure, engine mismatch et al.) occurred because the fuel pressure is not stabilized and controlled accurately. In this study, the effects on a fuel pressure, return fuel mass flow, and engine rotating speed according to the control rate of fuel pressure regulator were investigated to analyze the performance variation under the failure conditions of a fuel pressure regulator. As a result, when the control rate of a fuel pressure regulator decreased by 4%~6% compared to that of the standard condition, the variation of engine rotating speed and return fuel flow were increased greatly, and the abnormal condition occurred. In addition, it is possible to diagnose the failure of a fuel pressure regulator by monitoring these conditions.

Development of DME Engine Using 3.9 Liter Diesel Engine with Mechanical Type Fuel System (3.9 리터 기계식 디젤 엔진을 이용한 DME 엔진 개발 연구)

  • JANG, JINYOUNG;WOO, YOUNGMIN;KIM, GANGCHUL;CHO, CHONGPYO;JUNG, YONGIN;KO, AHYUN;PYO, YOUNGDUG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.307-313
    • /
    • 2020
  • The 3.9 liter diesel engine with a mechanical fuel injection system was converted to di-methyl ether (DME) engine and performance optimized. In order to switch to the DME engine, the plunger of the high pressure fuel pump was replaced and the diameter of the injector nozzle was increased. Through this, the disadvantage of DME having low calorific value per volume can be compensated. To optimize the performance, the number of injector nozzle holes, injector opening pressure, and fuel injection timing were changed. As a result, the optimum number of injector nozzle holes was 5, the injector opening pressure was from 15 MPa to 18 MPa, and the injection timing was 15 crank angle degree before top dead center (CAD BTDC). The power was at the same level as the base diesel engine and nitrogen oxides (NOx) emissions could be reduced.

Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel (바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향)

  • Ryu, Kyunghyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.