• 제목/요약/키워드: Fuel gas

검색결과 4,082건 처리시간 0.031초

가스연료엔진의 희박영역에서의 배출가스특성에 관한 연구 (Emission Characteristics of a Gas Fueled Sl Engine under Lean Burn Conditions)

  • 김창업;배충식
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.93-100
    • /
    • 2002
  • For natural gas and LPG fuel, measurements on the concentrations of individual exhaust hydrocarbon species have been made as a function of air-fuel ratio in a 2-liter four-cylinder engine using a gas chromatography. NMHC in addition to the species of HC, other emissions such as CO$_2$, CO and NOx were examined for natural gas and LPG at 1800rpm far two compression ratios (8.6 and 10.6). Fuel conversion efficiencies were also investigated together with emissions to study the effect of engine parameters on the combustion performances in gas engines especially under the lean bum conditions. It was found that CO$_2$ emission decreased with smaller C value of fuel, leaner mixture strength and the higher compression ratio. HC emissions from LPG engine consisted primarily of propane (larger 60%), ethylene and propylene, while main emissions from natural gas were mothane (larger than 60%), ethane, ethylene and propane on the average. The natural gas was proved to give the less ozone formation than LPG fuel. This was accomplished by reducing the emissions of propylene, which has relatively high MIR factor, and propane that originally has large portion of LPG. In addition, natural gas shows a benefit in other emissions (i.e. NMHC,NOx, CO$_2$and CO), SR and BSR values except fuel conversion efficiency.

산소분리기술을 사용한 연료전지/순산소연소 발전시스템 해석 (Analysis of Solid Oxide Fuel Cell/Oxy-fuel Combustion Power Generation System Using Oxygen Separation Technology)

  • 박성구;김동섭;손정락;이영덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.51-54
    • /
    • 2008
  • This study aims to devise and analyze a power generation system combining the solid oxide fuel cell and oxy-fuel combustion technology. The fuel cell operates at an elevated pressure, a constituting a SOFC/gas turbine hybrid system. Oxygen is extracted from the high pressure cathode exit gas using ion transport membrane technology and supplied to the oxy-fuel power system. The entire system generates much more power than the fuel cell only system due to increased fuel cell voltage and power addition from oxy-fuel system. More than one third of the power comes out of the oxy-fuel system. The system efficiency is also higher than that of the fuel cell only system. Recovering most of the generated carbon dioxide is major advantage of the system.

  • PDF

가정용 연료전지 $1Nm^3/hr$급 천연가스 연료처리장치의 운전 특성 (Operating Characteristics of $1Nm^3/hr$ class Natural Gas Fuel Processor for Residential Fuel cells)

  • 신장식;신석재;이승영;양혜경;성봉현;김두훈;박종원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.19-22
    • /
    • 2007
  • In this study, we investigated operating characteristics of natural gas fuel processor for polymer electrolyte membrane fuel cells (PEMFCs). The fuel processor consists of a natural gas reformer, a water-gas shift reactor, a heat-exchanger and a burner, in which the overall integrated volume is exactly(exceptionally) small, namely, about 10L except outer insulation. The producted hydrogen is $1Nm^3/hr$ and the maximum thermal efficiency is ${\sim}76%$(low heating value) at full operating load. A compact and highly efficient $1Nm^3/hr$ class natural gas fuel processor was developed at UNISON is an advantage for application in residential PEMFCs co-generation systems.

  • PDF

열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구 (A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System)

  • 정일래;김용술;심용식
    • 한국대기환경학회지
    • /
    • 제7권1호
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

FUEL PERFORMANCE CODE COSMOS FOR ANALYSIS OF LWR UO2 AND MOX FUEL

  • Lee, Byung-Ho;Koo, Yang-Hyun;Oh, Jae-Yong;Cheon, Jin-Sik;Tahk, Young-Wook;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.499-508
    • /
    • 2011
  • The paper briefs a fuel performance code, COSMOS, which can be utilized for an analysis of the thermal behavior and fission gas release of fuel, up to a high burnup. Of particular concern are the models for the fuel thermal conductivity, the fission gas release, and the cladding corrosion and creep in $UO_2$ fuel. In addition, the code was developed so as to consider the inhomogeneity of MOX fuel, which requires restructuring the thermal conductivity and fission gas release models. These improvements enhanced COSMOS's precision for predicting the in-pile behavior of MOX fuel. The COSMOS code also extends its applicability to the instrumented fuel test in a research reactor. The various in-pile test results were analyzed and compared with the code's prediction. The database consists of the $UO_2$ irradiation test up to an ultra-high burnup, power ramp test of MOX fuel, and instrumented MOX fuel test in a research reactor after base irradiation in a commercial reactor. The comparisons demonstrated that the COSMOS code predicted the in-pile behaviors well, such as the fuel temperature, rod internal pressure, fission gas release, and cladding properties of MOX and $UO_2$ fuel. This sufficient accuracy reveals that the COSMOS can be utilized by both fuel vendors for fuel design, and license organizations for an understanding of fuel in-pile behaviors.

1 kW급 가정용 연료개질기 성능 최적화 (Performance optimization of 1 kW class residential fuel processor)

  • 정운호;구기영;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.731-734
    • /
    • 2009
  • KIER has been developed a compact and highly efficient fuel processor which is one of the key component of the residential PEM fuel cells system. The fuel processor uses methane steam reforming to convert natural gas to a mixture of water, hydrogen, carbon dioxide, carbon monoxide and unreacted methane. Then carbon monoxide is converted to carbon dioxide in water-gas-shift reactor and preferential oxidation reactor. A start-up time of the fuel processor is about 1h and CO concentration among the final product is maintained less than 5 vol. ppm. To achieve high thermal efficiency of 80% on a LHV basis, an optimal thermal network was designed. Internal heat exchange of the fuel processor is so efficient that the temperature of the reformed gas and the flue gas at the exit of the fuel processor remains less than $100^{\circ}C$. A compact design considering a mixing and distribution of the feed was applied to reduce the reactor volume. The current volume of the fuel processor is 17L with insulation.

  • PDF

플라즈마트론을 이용한 디젤 엔진의 매연저감에 관한 연구 (A Study on Emission Reductions of Diesel Engine Using Plasmatron Fuel Converter)

  • 기호범;김봉수;곽용환;김우형;임원경;채재우
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.104-109
    • /
    • 2006
  • Improvements in internal combustion engine and aftertreatment technologies are needed to meet future environmental quality goals. Plasmatron fuel converters provide a rapid response, compact means to transform a wide range of hydrocarbon fuels (including gasoline, natural gas and diesel fuel) into hydrogen-rich gas. Hydrogen-rich gas can be used as an additive to provide NOx reductions of more than 80% in diesel engine vehicles by enabling very lean operation or heavy exhaust engine recirculation. For diesel engines, use of compact plasmatron reformers to produce hydrogen-rich gas for the regeneration of NOx absorber/absorbers and particulate traps for diesel engine exhaust after-treatment could provide significant advantages. Recent tests of conversion of diesel fuel to hydrogen-rich gas using a low current plasmatron fuel converter with non-equilibrium plasma features are described.

  • PDF

연료 종류에 따른 이중 오리피스 노즐의 분무 특성 연구 (A Spray Characteristics of Dual Orifice Injector with Different Fuel Properties)

  • 이동훈;최성만;박정배
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.7-15
    • /
    • 2003
  • The effects of fuel density and fuel viscosity on spray characteristics were investigated under two different gas turbine fuels and various fuel supply pressure conditions through measurement of SMD, number density and volume flux by using PDPA system in dual orifice injector for gas turbine engines. In this study, we found out that the droplet size and spray structure are strongly depend on fuel density for dual orifice injector. The spray characteristics of high density fuel in dual orifice injector are similar with the characteristics of low density fuel in single orifice injector. The shear region between primary main fuel stream and secondary main fuel stream is examined in low density fuel condition but not exist in high density fuel condition, then this shear region is very important in quality of gas turbine spray. There are worth consideration for the effect of fuel density on spray characteristics in frontal device design to improve combustion efficiency.

  • PDF

가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰 (A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System)

  • 유원주;이승현
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2010년도 춘계학술대회
    • /
    • pp.81-95
    • /
    • 2010
  • Gas turbines generating power operate in high temperature condition and use natural gas as fuel. For that reason, there are many cases where damage is done to the hot gas parts caused by the high temperature and many accidents occur like gas explosions, then various efforts are needed to maintain the hot gas parts and prevent accidents. It is difficult to find the root causes of damage to the hot gas parts from the gas explosion caused by gas leakage through rotor cooling air line from fuel gas heat exchanger during the shut down. To prevent gas turbine from damage, removal of gas leakage inside of gas turbine is required by purging the turbine before firing, improving the fuel gas heating system and installing alarm systems for detecting gas leakage from stop valve to turbine while the gas turbine has shut down.

  • PDF

가스온풍기용 가스버너의 설계 및 개발에 관한 연구 (A Study on the Design and Development of Gas Burner for Gas Furnace)

  • 박용호;염만오;심성훈;엄기훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of this study is to modify the kerosene furnace, which is forced flue type with 15000kcal capacity, to gas furnace satisfying for CITY gas, LNG gas and LPG gas. The gas furnace, a kind of gas appliance, is mainly used for heating houses by combusion of gas. This paper describes briefly the design technology for gas burner which is most important in replacing kerosene fuel with gas fuel. Especially, the design for gas nozzle is constructed by theoretical and experimental method. It is found that the experimental results of the modified gas burner are good agreement with the theoretical results for calorific value and combustion efficiency. The result of this study will contribute in the design skill and of gas burner and similar gas appliance, and the pursuit for reduction of fuel cost as well as atmospheric pollution.

  • PDF