• 제목/요약/키워드: Fuel design criteria

검색결과 92건 처리시간 0.033초

Technical Issues of Remote Assembler for TRU Fuel Assembly

  • Lee, Young-Ho;Park, Sang-Gyu;Kim, Ki-ho;Park, Jeong-Yong;Lee, Chan-Bock
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 추계학술논문요약집
    • /
    • pp.91-92
    • /
    • 2017
  • In this study, assembling procedure of TRU fuel assembly was reviewed and divided into rod bundle assembling, mating preassemblies and welding, and inspection and non-destructive examination. Based on this assumption, the design criteria of a remote assembler for TRU fuel assembly of PGSFR is defined and predictable technical issues are proposed.

  • PDF

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • 제43권2호
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.

CFD를 이용한 연료전지 차량 레이아웃 최적화 (Engine Room Layout Design Optimization of Fuel Cell Vehicle Using CFD Technique)

  • 김정일;전완호;조장형
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.99-106
    • /
    • 2011
  • This paper deals with engine room layout design optimization of fuel cell electric vehicle (FCEV), which has been proposed as a potential alternative to fossil fuel depletion. Investing the great R&D efforts, the global vehicle manufacturers, especially Honda motor corporate, have shown not prototype vehicle but commercial vehicle using fuel cell in the market recently. In this paper, we analyze cooling performance and flow characteristic in the engine room of newly FCEV, in addition we suggest the optimization process for engine room layout design optimization. The two radiators in the vehicle for fuel cell stack and electronic components cooling have been analyzed and their performance are obtained in terms of cooling performance ratio (CPR). The value of CPR should always be less than one and based on criteria, we have achieved the optimum cooling performance of radiators for stack and electronic components. Aerodynamic performance is evaluated in terms of drag coefficient, improved through underbody modification using air devices.

연료전지/축전지 복합 동력원 연계 성능 해석 (Performance Analysis of fuelcell/Battery Hybrid vehicles)

  • 이봉도;이원용;한수빈;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3141-3143
    • /
    • 1999
  • Fuel cell systems offer high energy efficiencies for transportation application. In addition, they can use alcohols and alternative fuels as the fuel, while producing little or no noxious emissions. Fuel cell-powered energy source should be competitive in performance characteristics and in capital and maintenance costs with internal combustion engine systems. From computer simulation program, battery and fuel cell energy output and total power profile, motor power, battery energy output, fuel cell energy output. It simulates the performance of fuelcell/battery powered energy source operation over any user inputted transit route cycle, and provides performance criteria through user specifications for preliminary design consideration.

  • PDF

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

원공배열 결정에 최적기준법에 의한 전동차 크로스 빔의 위상최적화에 관한 연구( I ) (A Study on the Topology Optimization of Electric Vehicle Cross beam using an Optimality Criteria Method in Determination of Arranging Hole( I ))

  • 전형용
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.137-145
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. a lightweight vehicle body is salutary to save operating costs and fuel consumption. Therefore this study is to perform the size and the shape optimization of crossbeam for electric vehicle using the method of topology optimization to introduce the concept of homogenization based on optimality criteria method which is efficient for the problem having the number of design variables and a few boundary condition. this provides the method to determine the optimum position and shape of circular hole in the cross beam and then can achieve the optimal design to reduce weight.

Multi-batch core design study for innovative small modular reactor based on centrally-shielded burnable absorber

  • Steven Wijaya;Xuan Ha Nguyen;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.907-915
    • /
    • 2024
  • Various core designs with multi-batch fuel management (FM) are proposed and optimized for an innovative small modular reactor (iSMR), focusing on enhancing the inherent safety and neutronic performance. To achieve soluble-boron-free (SBF) operation, cylindrical centrally-shielded burnable absorbers (CSBAs) are utilized, reducing the burnup reactivity swing in both two- and three-batch FMs. All 69 fuel assemblies (FAs) are loaded with 2-cylindrical CSBA. Furthermore, the neutron economy is improved by deploying a truly-optimized PWR (TOP) lattice with a smaller fuel radius, optimized for neutron moderation under the SBF condition. The fuel shuffling and CSBA loading patterns are proposed for both 2- and 3-batch FM with the aim to lower the core leakage and achieve favorable power profiles. Numerical results show that both FM configurations achieve a small reactivity swing of about 1000 pcm and the power distributions are within the design criteria. The average discharge burnup in the two-batch core is comparable to three-batch commercial PWR like APR-1400. The proposed checker-board CR pattern with extended fingers effectively assures cold shutdown in the two-batch FM scenario, while in the three-batch FM, three N-1 scenarios are failed. The whole evaluation process is conducted using Monte Carlo Serpent 2 code in conjunction with ENDF/B-VII.1 nuclear library.

정상운전시 DFDF 시설의 환경영향평가 (Environmental Effects of DFDF Normal Operation)

  • 박장진;이호희;신진명;김종호;양명승
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.621-626
    • /
    • 2003
  • 핵비확산성 건식공정 산화물핵연료는 경수로 사용후핵연료를 재가공하여 원전에서 사용할 수 있는 핵연료로 재가공하는 개념으로, 이 실험은 고방사능 물질인 사용후핵연료를 초기물질로 사용하므로 고방사능 차폐시설인 핫셀 내에서 원격으로 조작되어야 하는 기술적 특성 때문에 이 실험은 적절한 공학적 요건과 안전성을 갖춘 전용시설(DFDF: DUPIC Fuel Fabrication Facility)을 구축하여 '00년 1월부터 실제 사용후핵연료를 사용한 실험을 수행하고 있다. DFDF에서 최대 약 50 ㎏U/yr의 사용후핵연료를 사용하여 건식공정 산화물핵연료 제조시험을 수행할 때 IMEF 시설의 방사선 환경영향에 미치는 영향을 검토하였다 분석한 결과 DFDF 시설의 운영으로 인한 영향은 모두 관련법규를 만족할 뿐 아니라 IMEF 시설의 설계기준도 만족하는 것으로 분석되었다.

  • PDF