• Title/Summary/Keyword: Fuel costs

Search Result 336, Processing Time 0.025 seconds

A Study on the Evaluation of the Long-Term Avoided Generation Cost (장기 회피 발전비용 계산에 관한 연구)

  • Kim, Jong-Ok;Park, Jong-Bae;Kim, Kwang-In;Lee, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.878-882
    • /
    • 1996
  • This paper discusses the definition and concepts, approach methodologies, capable application areas in electricity business, and tentative calculation of avoided generation costs based on the Korea's official long-term generation expansion plan. The objective to evaluate avoided costs of a resource is to supply decision makers with the breakeven cost of a targeting avoided resource. For the evaluation of avoided costs of the Korea's generation system, we consider the pseudo-DSM option which has 1,000MW peak savings, load factor with 70 percent, and life-time With 25 years as the avoided resource. The DSM resource can save the fuel and capacity additions of a electric utility during its life time. The capacity and fuel savings are evaluated from the two different cashflows with and Without the DSM option, which are generated on the basis of the generation system optimization model(WASP-II), independently. The breakeven kWh costs of the DSM option over this 25-year period is projected to be 34.1[won/kWh], which is composed of generation-capacity and fuel avoided costs with 101.139[won/kW] and 17.6[won/kWh], respectively.

  • PDF

NUCLEAR FUEL CYCLE COST ESTIMATION AND SENSITIVITY ANALYSIS OF UNIT COSTS ON THE BASIS OF AN EQUILIBRIUM MODEL

  • KIM, S.K.;KO, W.I.;YOUN, S.R.;GAO, R.X.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.306-314
    • /
    • 2015
  • This paper examines the difference in the value of the nuclear fuel cycle cost calculated by the deterministic and probabilistic methods on the basis of an equilibrium model. Calculating using the deterministic method, the direct disposal cost and Pyro-SFR (sodium-cooled fast reactor) nuclear fuel cycle cost, including the reactor cost, were found to be 66.41 mills/kWh and 77.82 mills/kWh, respectively (1 mill = one thousand of a dollar, i.e., $10^{-3}$ $). This is because the cost of SFR is considerably expensive. Calculating again using the probabilistic method, however, the direct disposal cost and Pyro-SFR nuclear fuel cycle cost, excluding the reactor cost, were found be 7.47 mills/kWh and 6.40 mills/kWh, respectively, on the basis of the most likely value. This is because the nuclear fuel cycle cost is significantly affected by the standard deviation and the mean of the unit cost that includes uncertainty. Thus, it is judged that not only the deterministic method, but also the probabilistic method, would also be necessary to evaluate the nuclear fuel cycle cost. By analyzing the sensitivity of the unit cost in each phase of the nuclear fuel cycle, it was found that the uranium unit price is the most influential factor in determining nuclear fuel cycle costs.

A Study on the Proper Number of Banks of Parallel Operation of Transformer in Large-scale Power Plants Using the High Temperature Fuel Cell Considering the Internal Failure (내부고장을 고려한 고온형 연료전지 대규모 발전단지의 병렬운전 변압기 적정 뱅크수에 관한 연구)

  • Chong, Young-Whan;Chai, Hui-Seok;Sung, In-Je;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.26-31
    • /
    • 2014
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we should divide the power plant configuration to several banks. However, the improvement of reliability in fuel cell power plant system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we evaluate the cost for operation and installation, the benefit for electric energy and thermal energy sales, and the system reliability for several cases : these cases relate with the bank configuration.

Evaluation of Generation Avoided Costs of a DSM Resource Using the Long-term Generation Expansion Planning Model (전원개발계획 최적화 모형에 기초한 DSM 자원의 회피발전비용 계산)

  • 김광인;박종배;박영문;권영한;이광호
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.131-137
    • /
    • 1998
  • This paper discusses definition, concepts, approach methods, application areas, and evaluation of avoided generation costs based on the Korea's official long-term generation expansion plan. The main objective to evaluate avoided costs of resources is to supply decision makers with the breakeven costs of the resources. For the evaluation of avoided costs based on the Korea's generation system, we consider a DSM option which has 1,000MW peak savings, load factor with 70 percents, and life-time with 25 years. The DSM resource can save the fuel spending and capacity additions of a electric utility during its life time. The capacity and fuel savings are evaluated from two different cashflows with and without the DSM option, which are supplied with on the basis of the generation system optimization model (WASP-II), independently. The breakeven kWh costs of the DSM option is projected to be 31.3 [won/kWh], which is composed of generation capacity and fuel avoided costs with 15.0[won/kWh] and 16.3[won/kWh], respectively.

  • PDF

Fuel Cycle Cost Analysis of Go-ri Nuclear Power Plant Unit I

  • Chang Hyun Chung;Chang Hyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.295-310
    • /
    • 1975
  • A system of model price data for the fuel cost estimation of the Go-ri plant is developed. With the application of MITCOST-II computer code the levelized unit fuel costs over the entire lifetime of the plant are evaluated. It is found that the overall levelized unit fuel cost is 7.332 mills/Kwhe and that the uranium ore and enrichment service represent more than 85% of the unit cost, assuming a simple once-through fuel cycle process with no reprocessing of the spent fuel. The effects of the cost fluctuations in these fuel cycle elements and the capacity factor changes are also evaluated. The results indicate that the fuel costs are most sensitive to the variation of uranium ore price. Efforts must, therefore, be employed for the arrangement of cheap and timely supply of uranium ore in order to achieve the economic generation of nuclear power.

  • PDF

A Study on the Alternative Technology Evaluation Based on LCA and ″extended″ Energy I/O Technique (LCA와 에너지수지비 개념의 확장을 통한 대체에너지기술의 평가방법론)

  • 박찬국;박영구;최기련
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.317-324
    • /
    • 1999
  • This study suggests the effectiveness of an "extended" power system evaluation methodology based on LCA and energy input-output analysis techniques. This "extended" evaluation methodology is designed to incorporate total energy system costs through fuel cycle and external costs, including CO$_2$abatement cost. As an empirical test, we applied the methodology to orimulsion-fired power generation technology and found that orimulsion could be considered as in attractive base-load power generation fuel in terms of economic and environmental aspects, compared to conventional coal-fired power plant.

  • PDF

A Study on the Feasibility of the Three Prospective Types of HEV (국내 보급 예정 하이브리드 자동차의 유형별 편익 고찰)

  • Lee, Dong-Jun;Lee, Ye-Ji;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.52-60
    • /
    • 2008
  • More people have become interested in hybrid vehicles - which have been heralded as environmentally friendly automobiles - recently as the opening of domestic hybrid vehicle market draws near. Since gasoline, diesel and LPG hybrid vehicles will be produced, a need exists to conduct economic feasibility study of each vehicle type. This research analyzed projected benefits of these hybrid vehicles based on the 1600cc model. There are two categories of benefits: 1) reduced fuel costs for the owners of the vehicles; and 2) reduced environmental pollution cost. We conducted a sensitivity analysis and estimated the domestic consumer fuel costs based on the international oil prices of 100USD, 150USD, and 200USD per barrel. The analysis showed savings of 2 to 4 million Won in fuel cost and 1 to 2 million Won in environmental pollution cost; therefore, the hybrid vehicles are not economically feasible if they are between 3 to 5 million Won more expensive than the conventional internal combustion engine vehicles.

  • PDF

Fuel Conversion to Renewable Energy Analysis of the Impact on the Horticulture in the Agricultural Sector -Mainly Wood Pellets- (농업부문에서 신재생에너지로의 연료전환이 시설원예에 미치는 영향 분석 -목재펠릿을 중심으로-)

  • Yoon, Sung-Yee;Kim, Tae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.531-547
    • /
    • 2014
  • This study analyzed the effect of Greenhouse of wood pellet fuel conversing from Diesel. Analyzed through a life cycle assessment of greenhouse gas emissions of carbon dioxide for the environmental assessment, In evaluation of the Ministry of the Environment, analyzed through the life cycle assessment of carbon dioxide emissions of the greenhouse gas and, In the case of economic evaluation, we analyzed the investment payback period to the total revenue generated by each of the calculated incentive based on the RHI and institutions reduction projects a reduction of costs associated with the reduction of fuel costs.

Development of a low-energy used large midwater trawl using a numerical method (수치해석기법을 이용한 에너지 저소비형 대형 중층 트롤어구 개발)

  • Lee, Kyounghoon;Lee, Chun-Woo;Yang, Yong-Su;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.3
    • /
    • pp.195-207
    • /
    • 2012
  • Fuel consumption in fisheries is a primary concern due to environmental effects and costs to fishermen. Much research has been carried out to reduce the fuel consumption related to fishing operations. The fuel consumption of fishing gear during fishing operation is generally related to hydrodynamic resistance on the gear. This research demonstrates a new approach using numerical methods to reduce fuel consumption. The results from the simulation were verified with results that mirrored the model experiments. By designing the fishing gear using drawing software, the whole and partial resistance force on the gear can be calculated as a result of simulations. The simulation results will suggest suitable materials or gear structure for reducing the hydrodynamic forces on the gear while maintaining the performance of the gear. Furthermore, the efficiency of low energy used trawl as economic point of view will be dealt. This research will helpful to reduce the GHG emissions from fishing operations and lead to reduce fishing costs due to fuel savings.

Basic Design of Fuel Cell Powered Vehicies (연료전지 자동차 구동시스템 개념 설계)

  • Lee, Bong-Do;Lee, Won-Yong;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.264-266
    • /
    • 1997
  • Fuel cell systems offer high energy efficiencies for transportation application. In addition, they can use alcohols and alternative fuels as the fuel, while producing little or no noxious emissions. Fuel cell-powered vehicles should be competitive in performance characteristics and in capital and maintenance costs with internal combustion engine vehicles. The objective of the present study is to design a fuel cell-powered passenger car to analyze technical feasibility.

  • PDF