• Title/Summary/Keyword: Fuel consumption(FC)

Search Result 11, Processing Time 0.023 seconds

Optimization of aircraft fuel consumption and reduction of pollutant emissions: Environmental impact assessment

  • Khardi, Salah
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.311-330
    • /
    • 2014
  • Environmental impact of aircraft emissions can be addressed in two ways. Air quality impact occurs during landings and takeoffs while in-flight impact during climbs and cruises influences climate change, ozone and UV-radiation. The aim of this paper is to investigate airports related local emissions and fuel consumption (FC). It gives flight path optimization model linked to a dispersion model as well as numerical methods. Operational factors are considered and the cost function integrates objectives taking into account FC and induced pollutant concentrations. We have compared pollutants emitted and their reduction during LTO cycles, optimized flight path and with analysis by Dopelheuer. Pollutants appearing from incomplete and complete combustion processes have been discussed. Because of calculation difficulties, no assessment has been made for the soot, $H_2O$ and $PM_{2.5}$. In addition, because of the low reliability of models quantifying pollutant emissions of the APU, an empirical evaluation has been done. This is based on Benson's fuel flow method. A new model, giving FC and predicting the in-flight emissions, has been developed. It fits with the Boeing FC model. We confirm that FC can be reduced by 3% for takeoffs and 27% for landings. This contributes to analyze the intelligent fuel gauge computing the in-flight fuel flow. Further research is needed to define the role of $NO_x$ which is emitted during the combustion process derived from the ambient air, not the fuel. Models are needed for analyzing the effects of fleet composition and engine combinations on emission factors and fuel flow assessment.

Machine Learning Methods to Predict Vehicle Fuel Consumption

  • Ko, Kwangho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.13-20
    • /
    • 2022
  • It's proposed and analyzed ML(Machine Learning) models to predict vehicle FC(Fuel Consumption) in real-time. The test driving was done for a car to measure vehicle speed, acceleration, road gradient and FC for training dataset. The various ML models were trained with feature data of speed, acceleration and road-gradient for target FC. There are two kind of ML models and one is regression type of linear regression and k-nearest neighbors regression and the other is classification type of k-nearest neighbors classifier, logistic regression, decision tree, random forest and gradient boosting in the study. The prediction accuracy is low in range of 0.5 ~ 0.6 for real-time FC and the classification type is more accurate than the regression ones. The prediction error for total FC has very low value of about 0.2 ~ 2.0% and regression models are more accurate than classification ones. It's for the coefficient of determination (R2) of accuracy score distributing predicted values along mean of targets as the coefficient decreases. Therefore regression models are good for total FC and classification ones are proper for real-time FC prediction.

IEA ECBCS Annex 54 Economic Assessment Study of a Fuel Cell Integrated Ground Source Heat Pump Microgeneration System (연료전지 지열히트펌프 마이크로제너레이션 IEA ECBCS Annex 54 경제성 평가 연구)

  • Na, Sun-Ik;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.199-205
    • /
    • 2014
  • The integration of FC (Fuel Cell) and GSHP (Ground Source Heat Pump) hybrid system could produce a synergistic advantage in thermal and electric way. This study intends to analyse the economical aspect of a FC integrated GSHP hybrid system compared to the conventional system which is consisted with a boiler and a chiller. Based on the hourly simulation, the study indicated that GSHP system and FC+GSHP hybrid system could reduce the energy consumption on a building. The method of the economic assessment has been based on IEA ECBCS Annex 54 Subtask C SPB(Simple Payback) method. The SPB was calculated using the economic balanced year of the alternative system over the conventional (reference) system. The SPB of the alternative systems (GSHP and FC+GSHP) with 50% initial incentive was 4.06 and 26.73 year respectively while the SPB without initial incentive of systems was 10.71 and 57.76 year.

Modification of Hybrid Diesel Vehicle and Its Effect on the Exhaust Emissions (디젤 하이브리드 차량 개조에 따른 배기 배출물 영향 평가)

  • Kwon, Soonho;Lim, Jongsoon;Lee, Hyunwoo;Lee, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.537-544
    • /
    • 2015
  • The effects of the modification of hybrid vehicle components on diesel exhaust emissions were investigated in this study. We examined the changes in exhaust emissions and the fuel consumption (FC) caused by the modification of generator (alternator) and motors. Exhaust emissions such as black carbon (BC), HC, $NO_X$ and $CO_2$ were measured not only in idle state but also on an actual urban road as well as on a chassis dynamometer. BC, $NO_X$ and HC emissions increased by 95%, 27% and 34% respectively when the generator charged the battery in the idle condition. BC and FC decreased in hybrid mode on the actual urban road partly because the motors were used to assist the diesel engine. In addition, the decreases in exhaust emissions and FC were also evident in the hybrid mode when the vehicle was tested on the chassis dynamometer.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

Analytic study on thermal management operating conditions of balance of 100kW fuel cell power plant for a fuel cell electric vehicle (100kW급 연료전지 열관리 시스템 실도로 운전조건 해석적 연구)

  • Lee, Ho-Seong;Lee, Moo-Yeon;Cho, Choong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • The objective of this study was to investigate performance characteristics of thermal management system(TMS) in a fuel cell electric vehicle with 100kW Fuel Cell(FC) system. In order to build up analytic modelling for TMS, each component was installed and tested under various operating conditions, such as water pump, radiator, 3-Way valve, COD heater, and FC stack etc. and as the results of them, correlations reflecting component's characteristics with flow rate, air velocity were developed. Developed analytic modelling was carried out under various operating conditions on the road. To verify modelling's accuracy, after prediction for optimum coolant flow rate was fulfilled under certain operating conditions, such as FC system, water pump speed, opening of 3-way valve, and pipe resistance, analytic and experimental values were compared and good agreement was shown. In order to predict cold-start operating performance for analytic modelling, coolant temperature variation was analyzed with $-20^{\circ}C$ ambient temperature and duration was predicted to rise in optimum temperature for FC. Because there is appropriate temperature difference between inlet and outlet of FC stack to operate FC system properly, related analysis was performed with respect to power consumption for TMS and heat rejection rate and performance map was depicted along with FC operating conditions.

Development of a Vehicle Driving Cycle in a Military Operational Area Based on the Driving Pattern (군 운용 지역에서 차량의 주행 패턴에 따른 주행모드 개발)

  • Choi, Nak-Won;Han, Dong-Sik;Cho, Seung-Wan;Cho, Sung-Lai;Yang, Jin-Saeng;Kim, Kwang-Suk;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.60-67
    • /
    • 2012
  • Most of a driving cycle is used to measure fuel consumption (FC) and emissions for a specified vehicle. A driving cycle was reflected geography and traffic characteristics for each country, also, driving pattern is affected these parameters such as vehicle dynamics, FC and emissions. Therefore, this study is an attempt to develop a driving cycle for military operational area. The proposed methodology the driving cycle using micro-trips extracted from real-world data. The methodology is that the driving cycle is constructed considering important parameters to be affected FC. Therefore, this approach is expected to be a better representation of heterogeneous traffic behavior. The driving cycle for the military operational area is constructed using the proposed methodology and is compared with real-world driving data. The running time and total distance of the final cycle is 1461 s, 13.10 km. The average velocity is 32.25 km/h and average grade is 0.43%. The Fuel economy in the final cycle is 5.93 km/l, as opposed to 6.10 km/l for real-world driving. There were about 3% differences in driving pattern between the final driving cycle and real-world driving.

Experimental and Numerical Assessment of the Effects of Various Coolant Temperature in Gasoline Vehicle on Fuel Consumption and Emissions (냉각수온 변화가 가솔린 차량의 연비 및 배출가스에 미치는 영향에 관한 실험 및 수치적 평가)

  • Jeong, SooJin;Kim, SeoKyu;Lee, GumSu;Jeong, Jinwoo;Kim, MyungHwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.297-308
    • /
    • 2017
  • One of the major engine thermal management system(TMS) strategies for improving fuel economy is to operate the engine in high temperatures. Therefore, this work performed a numerical and experimental study to examine the effect of several different STOs(Starting Temperature of Opening) of wax-thermostat, ranging from $85^{\circ}C$ to $105^{\circ}C$, of gasoline engine on fuel economy and emission characteristics. In this study, a gasoline car equipped with waxthermostat was tested and simulated under FTP-75 and HWFET mode. CRUISE $M^{TM}$ was used to simulate vehicle dynamics, transient engine performance and TMS. The test results showed fuel savings for both drive cycles due to higher STO of $100^{\circ}C$, which is slightly worse than that of $90^{\circ}C$ and amounts between 0.34 and 0.475 %. These controversial results are attributed to experimental errors and uncertainty. The computational results for three STOs, $85^{\circ}C$, $95^{\circ}C$ and $105^{\circ}C$, showed that fuel savings attributed to the application of higher STOs of $95^{\circ}C$ and $105^{\circ}C$ are relatively small and range from 0.306 to 0.363 %. It is also found that the amount of HC and CO emissions from the tailpipe tends to decrease with higher engine coolant temperature because of faster catalyst light-off and improved combustion.

Hybrid artificial bee colony-grey wolf algorithm for multi-objective engine optimization of converted plug-in hybrid electric vehicle

  • Gujarathi, Pritam K.;Shah, Varsha A.;Lokhande, Makarand M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2020
  • The paper proposes a hybrid approach of artificial bee colony (ABC) and grey wolf optimizer (GWO) algorithm for multi-objective and multidimensional engine optimization of a converted plug-in hybrid electric vehicle. The proposed strategy is used to optimize all emissions along with brake specific fuel consumption (FC) for converted parallel operated diesel plug-in hybrid electric vehicle (PHEV). All emissions particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) are considered as optimization parameters with weighted factors. 70 hp engine data of NOx, PM, HC, CO and FC obtained from Oak Ridge National Laboratory is used for the study. The algorithm is initialized with feasible solutions followed by the employee bee phase of artificial bee colony algorithm to provide exploitation. Onlooker and scout bee phase is replaced by GWO algorithm to provide exploration. MATLAB program is used for simulation. Hybrid ABC-GWO algorithm developed is tested extensively for various values of speeds and torque. The optimization performance and its environmental impact are discussed in detail. The optimization results obtained are verified by real data engine maps. It is also compared with modified ABC and GWO algorithm for checking the effectiveness of proposed algorithm. Hybrid ABC-GWO offers combine benefits of ABC and GWO by reducing computational load and complexity with less computation time providing a balance of exploitation and exploration and passes repeatability towards use for real-time optimization.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.