• Title/Summary/Keyword: Fuel combustion

Search Result 3,222, Processing Time 0.026 seconds

Effects of Soybean Biodiesel Fuel on Exhaust Emissions in Compression Ignition Combustion (대두유 바이오 디젤연료가 압축 착화 연소에서 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.941-946
    • /
    • 2010
  • This study aims to investigate the effects of soybean biodiesel fuel on exhaust emissions with regards to two combustion modes: conventional combustion(existence of PM-NOx trade-off behavior) and low temperature combustion(LTC) in a 1.7 L common rail direct injection diesel engine. As compared to conventional combustion, LTC was achieved by adopting a heavier exhaust gas recirculation and strategic injection parameter optimization. Two sets of fuels, i.e. ultra low sulfur diesel(ULSD) and 20% volumetric blends of soybean biodiesel with ULSD(B20) were used. Regardless of the fuel type, in LTC the simultaneous reduction of PM and NOx was observed and both levels were significantly lower than in case of conventional combustion. Under the given engine operating condition in the case of conventional combustion, B20 produced less PM and more NOx than ULSD. In the case of LTC combustion, B20 produced more PM and NOx than ULSD.

Controlling Low Frequency Instability in Hybrid Rocket Combustion With Swirl Injection and Fuel Insert (스월 분사와 삽입연료에 의한 하이브리드 로켓 연소의 저주파수 연소불안정 조절)

  • Hyun, Wonjeong;Lee, Chanjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.139-146
    • /
    • 2021
  • In hybrid rocket combustion, the oxidizer swirl injection is frequently used to stabilize the combustion as the rotational velocity component affects the boundary layer flow. However, as the swirl strength increases, a problem arises where the combustion performance changes too much. Thus, this study attempts to control the low frequency instability while minimizing the change in combustion performance by adapting attenuated swirl injection with fuel insert used in reference [7]. To this end, a series of experimental tests were performed by varying swirl intensity and the location of the fuel insert. In the tests, the occurrence of combustion instability and combustion performance were closely monitored. The results confirmed that combustion instability was successfully suppressed at the condition of the swirl angle 6 degree and the location of fuel insert 310 mm. And, the changes in combustion pressure, O/F ratio, and fuel regression rate were found as minimal compared to the baseline case. Also the results reconfirmed that the formation of positive coupling between two high frequency oscillations in 500 Hz band, combustion pressure(p') and heat release oscillation(q'), is the necessary and sufficient condition of the occurrence of low frequency instability.

Unsteady Pressure Oscillations of Liquefied Paraffin Wax Combustion in Hybrid Rocket (파라핀-왁스를 사용하는 하이브리드 로켓 연소의 비정상 압력 진동)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.339-347
    • /
    • 2022
  • The post chamber in hybrid rocket is installed to induce additional increase in combustion enthalpy by allowing continuous burning of the liquefied fuels. When paraffin wax fuel is used, unsteady pressure oscillations are observed only at the beginning of combustion. This study intends to investigate the effect of additional combustion of liquefied fuel droplets on the occurrence of unsteady pressure fluctuations. For this, the combustion in post-chamber was visualized and image analysis using POD(Proper Orthogonal Decomposition) technique was performed. In addition, the hypothesis was proposed on the occurrence of unsteady pressure oscillations by identifying the modes including the behavior of droplets through mode reconstruction. Conducting a series of combustion tests, the amount of liquefied fuel flowing into the post chamber and the generation of fuel droplets were controlled. Also, the changes in frequency characteristic of unsteady pressure oscillation were monitored. As a result, the unsteady pressure oscillations observed in paraffin wax combustion were the result of additional combustion of fuel droplets generated in the post chamber.

Combustion Characteristics of Imported Bituminous & Subbituminous Coal in a Pilot Scale Test Facility (발전용 역청탄 및 아역청탄의 파일롯 연소특성 평가)

  • Kim, Hyunhee;Park, Hoyoung;Lim, Hyunsoo;Baek, Sehyun;Kim, Taehyung;Kim, Youngju;Gong, Jiseon;Lee, Jeongeun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.207-214
    • /
    • 2014
  • With the depletion of high grade coal, it is indispensable to be used co-combustion of low rank coal with bituminous coal in pulverized coal-fired power plants. This study describes the detailed measurements of combustion characteristics of bituminous and subbituminous coal in a 0.7MWth pilot-scale test facility. This experimental works include the measurement of gas temperature, gas concentrations along with the reactor axial and radial distance at the condition of excess air ratio of 1.2. The solid sampling was carried out and analyzed with the combustion of bituminous coal. The main reaction zone of coal flame in a reactor was formed about 1 m from the swirl burner, and at downstream, the fully developed temperature and species distribution was observed. The sampled particles of bituminous coal in a reactor revealed the complete carbon burn-out was achieved just after an main combustion zone.

Study on the control of fuel-air ratio ofgas swirl burner (가스 스월버너의 공연비 제어에 관한 연구)

  • Kim, I.K.;Kim, Y.S.;Kim, Y.H.;Kim, K.S.;Kim, J.W.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.129-138
    • /
    • 1999
  • In this paper, our main issue is that establishing the control procedure of continuous gas flow rate according to combustion fan RPM. For this, first, we decide the optimum operating condition of gas swirl burner through analysis of combustion characteristics - thermal efficiency, combustion efficiency and exhaust gases such as CO, $CO_{2}$, $O_{2}$, $NO_{x}$ and THC. Second, fuel gas flow rate of gas valve is decided with considering excess air ratio and combustion fan RPM is decided by the target of combustion air flow rate. Finally, experimental operating equation is acquired by regression for gas valve and combustion fan. This equation is the control equation of continuous gas flow rate and always gas flow rate is decided by combustion fan operating RPM.

  • PDF

Formation of MILD Combustion using Co-flow MILD Combustor (동축류 마일드 연소기를 적용한 마일드 연소 형성 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.8-16
    • /
    • 2017
  • MILD combustion was first developed to suppress thermal NOx formation in combustor for heating industrial furnaces. In this paper, the effect of co-flow MILD combustor geometry and operating conditions on the formation of MILD combustion was analyzed using 3 dimensional numerical simulation. The numerical simulations were carried out using ANSYS Fluent. The combustion and turbulence flow was modeled using the Eddy Dissipation Concept(EDC) model and realizable $k-{\varepsilon}$ model respectively. The results show that the high temperature region and average temperature decreased due to an increase in the air velocity and decrease the wall thickness of fuel nozzle. In particular, the MILD combustion flame was found to be stable with a combustion flame region at fuel velocity 10 m/s, air velocity 20 m/s, fuel nozzle thickness 1.0 mm, equivalence ratio 0.9, and outlet area ratio 40%.

Combustion Characteristics of Flameless Combustion by Reactants Injection Conditions (반응물 분사조건에 따른 무화염 연소특성 연구)

  • Hong, Seong Weon;Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • The flameless combustion has been considered as one of the promising combustion technology for high thermal efficiency, reducing NOx and CO emissions. In this paper, the effect of air and fuel injection condition on formation of flameless combustion was analyzed using three dimensional numerical simulation. The results show that the high temperature region and the average temperature was decreased due to increase of recirculation ratio when air velocity is increased. The average temperature was also affected by entrainment length. Generally mixing effect was enhanced at low entrainment length and dilution was dominated at high entrainment length. This entrainment length was greatly affected by air and fuel injection velocity and distance between air and fuel. It is also found that the recirculation ratio and dilution effect were generally increased by entrainment length and the recirculation ratio, mixing and dilution effect are the significant factor for design of flameless combustion system.

A Study on the Combustion Performance with Variation of Fuel Injection Hole Configuration at Supersonic Combustion (초음속 연소에서 연료 분사구 형상에 따른 연소성능 변화에 대한 실험적 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.19-26
    • /
    • 2011
  • In order to investigate the effect of fuel injection hole configuration within the scramjet combustor, experiment and quasi-one-dimensional analysis was performed. And the results were compared with experiment and analysis result which were performed in 2008 with same facility and test condition. Fuel injection hole size was decreased and quantity was increased. However the depth of fuel penetration and flow quantity of fuel were maintained. As a test result, combustion performance was increased significantly with no-cavity injector and slightly with plain-cavity. However, combustion performance with zigzag-cavity was decreased.

A Study on the Combustion Performance with Variation of Fuel Injection Hole Configuration at Supersonic Combustion (초음속 연소에서 연료 분사구 형상에 따른 연소성능 변화에 대한 실험적 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.423-431
    • /
    • 2010
  • In order to investigate the effect of fuel injection hole configuration within the scramjet combustor, experiment and quasi-one-dimensional analysis was performed. And the results were compared with experiment and analysis result which were performed in 2008 with same facility and test condition. Fuel injection hole size was decreased and quantity was increased. However the depth of fuel penetration and fuel flow were maintained. As a test result, combustion performance was increased significantly with no-cavity injector and slightly with plain-cavity. However, combustion performance with zigzag-cavity was decreased.

  • PDF

Mixing and Combustion Characteristics of a CNG and Air according to Fuel Supply Conditions in a DI Engine (직분식 엔진에서 연료공급 조건에 따른 CNG와 공기의 혼합 및 연소특성)

  • Kang, Jeong-Ho;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik;Ha, Jong-Yul
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • It was investigated how fuel injection timing - early injection and later injection - in conjunction with throttle open rate effect the fuel-air mixing characteristics, Engine power, combustion stability and emission characteristics on a DI CNG spark Engine and control system that had been modified and designed according to the author's original idea. It was verified that the combustion characteristics were changed according to fuel injection timings and Engine conditions determined by different throttle open rates and rpm. It was found that the combustion characteristics greatly improved at the complete open throttle rate with an early injection timing and at the part throttle rate with a late injection timing. Combustion duration was governed by flame propagation duration in a late injection timing and by an early flame development duration in an early injection timing. As the result, we discovered that combustion duration is shortened, lean limit is improved, air-fuel mixing conditions controlled, and emissions reduced through control of fuel injection timing according to change of the throttle open rate.

  • PDF