• Title/Summary/Keyword: Fuel cell simulation

Search Result 465, Processing Time 0.025 seconds

Optimal Design of Battery of Fuel Cell Electric Vehicle Based on Fuel Cell Dynamic Characteristic Model (연료전지 과도 특성 모델링 기반 FCEV용 배터리 용량 최적 설계)

  • Ko, Jeong-Min;Kim, Jong-Soo;Lee, Young-Kuk;Lee, Byung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1714-1719
    • /
    • 2009
  • In this paper, methodology of battery optimal designing is proposed. Fuel cell model including dynamic characteristic is developed and load model is produced by considering driving schedule. Using these models, required energy of load and supplying energy from fuel cell are analyzed by comparing simulation results. Also parameter of fuel cell model is changed variously and battery capacity is calculated in each cases. And methode of battery optimal designing is presented by regarding dynamic characteristic of fuel cell.

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

Numerical analysis of the shape effect on PEMFC's Performace (연료전지 성능에 영향을 미치는 채널형상에 대한 연구)

  • Kim, K.J.;Jeon, Yu-Taek;Kim, Hyo-Gyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.59-62
    • /
    • 2006
  • Formability is requested to successfully develop of a metal bipolar plate for mass production. From this point of view, wider channel and land width is more helpful to improve formability. But the performance of the fuel cell can be affected by its channel and land shape. So it is very important to select proper channel and land shape not to deteriorate the fuel cell performance. In this work, 3-dimensional, non-isothermal numerical simulation was performed to analyse the effects of channel and land width on the fuel cell performance. 3 types of straight channel were selected for the numerical simulation. The simulation results reveal that wide channel and land width lower fuel cell performance and decrease voltage at a high current density region. Water activity, temperature, oxygen concentration distributions were investigated to find the reasons of performance degradation. The results show that wide channel and land width give an bad effect on fuel cell performance because of low cool ins efficiency and lack of oxygen gas under the land.

  • PDF

Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell (PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석)

  • Jang, Hyuntak;Kang, Esak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft using Smoothed Particle Hydrodynamics (입자법을 이용한 회전익항공기 연료셀 피탄 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2553-2558
    • /
    • 2014
  • Military rotorcraft should be designed taking into account the condition of the fuel cell bullet impact. The internal fluid pressure, stress of metal fitting and fuel cell, bullet kinetic energy can be included as the design factor for the fuel cell. The best way to obtain the important design data is to conduct the verification test with actual product. But, the verification test requires huge cost and long-term effort. Moreover, there is high risk to fail because of the sever test condition. Thus, the numerical simulation is required to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact simulation based on SPH(smoothed particle hydrodynamics) is conducted with the commercial package, LS-DYNA. As the result of the numerical simulation, the internal pressure of fuel cell is calculated as 350~360MPa and the equivalent stress caused by hydro-ram effect is predicted as 260~350MPa on metal fittings.

Study on Optimization of Operation in household Fuel Cell System (가정용 연료전지 시스템의 요금 분석을 통한 최적 운전 방법 검토)

  • Park, Deaheum;Cha, Kwangseok;Jo, Hokyoo;Jung, Younguan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.598-603
    • /
    • 2012
  • Despite the high efficiency and eco-friendly of Household Fuel Cell System it has hardly obtained popularity mainly due to its high prices. In order to encourage use of the system prices and operational expenses need to become economical. In this study, optimization through simulation was conducted to find out the optimal operational condition. As a result of simulation the system is operated with DSS operation from 5 O'clock to 19 O'clock for 14 hours at the constant output of 0.4kW to maximize reduction of energy rate. this DSS operation condition can reduce 200,000 won of energy rates in 35 pyoung apartment for a year. And, we can know that starting time of DSS operation don't effect to energy rates through the simulation. Furthermore, the household fuel cell system with the rated output of 1kW should be reduced to 0.4 - 0.6kW which can promote installation of household Fuel Cell System. Now, the household fuel cell system don't have been used widely due to economical efficiency. but, in the near future, Fuel Cell will be used to household by decrease of LNG price caused by development of shale gas.

A Fuel Cell System with Z-Source Inverter and Ultracapacitors (Z-소스 인버터와 울트라커패시터를 이용한 연료전지 시스템)

  • Kim, Yoon-Ho;Lee, Uk-Young;Kim, Soo-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • When input parameters like gas volume or load of the fuel cell system is changed, the fuel cell system can generate transient voltage disturbances. In this paper, a fuel cell system with Z-source inverter and ultracapacitors for voltage disturbance compensation is proposed. The structure of Z-source inverter is simple. It has unique features that can boost/buck input voltage with a DC/DC converter using only a modified switching pattern. The characteristics of the proposed topologies for the fuel cell system with Z-source inverter and ultracapacitors are analyzed using simulation, and verified by experiments. The simulation and experimental results show that the proposed system is capable of operating with stable response to the system transient and voltage disturbances.

Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System (연료전지용 연료승압 블로어 내부유동장 평가)

  • Choi, Ka-Ram;Jang, Choon-Man
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

A Study on the 3kW Fuel Cell Generation System (3kW급 연료전지 발전시스템에 관한 연구)

  • Jeong, Dong-Hyo;Park, Jae-Se
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.75-78
    • /
    • 2005
  • Fuel cell is remarkable for one of the clean energy recently. But in the fuel cell case, it has characteristics with low voltage and high current. Therefore, for using domestic power, it should be changed to the power source with commercial voltage and frequency. In this paper fuel cell simulator having electrical characteristics is designed and constructed instead of fuel cell stack. Voltage generated from fuel cell is from 39V to 72V dc and should be boosted to 400V dc for home appliances. A stand alone system including the inverter and DC/DC converter for the fuel cell is then proposed. Simulation result is used to support the analysis.

  • PDF

Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter (디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발)

  • Ju, Young-Ah;Cha, Min-Young;Han, Byung-Moon;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.