• Title/Summary/Keyword: Fuel cell power generation

Search Result 396, Processing Time 0.029 seconds

Full-bridge Soft-Switching PS-PWM DC-DC Converter for Fuel Cell Generation System (연료전지 시스템을 위한 풀-브리지 소프트 위상 천이 PWM DC-DC 컨버터)

  • Mun, S.P.;Suh, K.Y.;Lee, H.W.;Nakaoko, M.;Shin, H.B.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.371-376
    • /
    • 2005
  • In this paper, a new a new full-bridge soft-switching phase shift PWM DC-DC Converter has been proposed, which is suitable for fuel cell based power generation system. The proposed converter has outstanding advantage over the conventional DC-DC converter with respect to high efficiency, high power density, and hish component utilization. In special. the proposed converter has predominant high boosting output voltage and high efficiency characteristics under the inherently severs low output voltage of the fuel cell through the overall load conditions. Moreover, the developed converter has been experimentally tested with the help of a fuel cell simulator, and can generate the V-I characteristics of proton exchange membrane(PEM) fuel cell, so that the performance of the proposed converter could be effectively examined and the validity of the converter could be verified.

  • PDF

The Feasibility Study on Small-scale Prototype Electric Railway Vehicle Application using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량 적용 선행연구)

  • Jung, No-Geon;Chang, Chin-Young;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.184-190
    • /
    • 2014
  • Fuel cell power system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. In recent years, railway field as well as mobile fuel cell power system is being studying actively with development of hydrogen storage technologies. This paper presents the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. it is confirmed that proposed fuelcell-battery hybrid system shows good response characteristic about speed and torque based on design of parameter on system. Also as results of response for proposed system modeling, it show that powering mode and braking mode of system is controlled by switching devices of converters.

A Design of Power Converter for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환 회로 설계)

  • Won, Chung-Yuen;Jang, Su-Jin;Lee, Won-Chul;Lee, Tae-Won;Kim, Soo-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell is characterized by low voltage and high current. Therefor, for connecting to general load, it needs both a step up converter and an inverter. The proposed system consists of an isolated DC-DC converter to boost the fuel cell voltage to 380[Vdc] and a PWM inverter with LC filter to convert the dc voltage to single phase 220[Vac]. Also, bi-directional DC-DC converter for fuel cell generation system is composed to improve load response characteristic. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation.

Analysis of Performance Characteristics of Gas Turbine-Pressurized SOFC Hybrid Systems Considering Limiting Design Factors (제한요소를 고려한 가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • Yang Won Jun;Kim Tong Seop;Kim Jae Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1013-1020
    • /
    • 2004
  • The hybrid system of gas turbine and fuel cell is expected to produce electricity more efficiently than conventional methods, especially in small power applications such as distributed generation. The solid oxide fuel cell (SOFC) is currently the most promising fuel cell for the hybrid system. To realize the conceptual advantages resulting from the hybridization of gas turbine and fuel cell, optimized construction of the whole system must be the most important. In this study, parametric design analyses for pressurized GT/SOFC systems have been peformed considering probable practical limiting design factors such as turbine inlet temperature, fuel cell operating temperature, temperature rise in the fuel cell and soon. Analyzed systems include various configurations depending on fuel reforming type and fuel supply method.

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.545-548
    • /
    • 2005
  • There is a close relation between the heat generation in the fuel cell stack and the fuel cell performance. In PEM fuel Gell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the stack power general ion can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cel1 output power can be carried out to maximize the performance of fuel cell system.

  • PDF

Constitution and Operation of a Molten Carbonate Fuel Cell System (용융탄산염형 연료전지 발전시스템 구성 및 운전)

  • Ahn, Kyo-Sang;Kim, Dong-Hyung;Seol, Jin-Ho;Lim, Hee-Chun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.100-103
    • /
    • 1997
  • Korea Electric Power Corporation (KEPCO) started a fuel cell project to develop alternative sources of electric power because of the rapid increase in power demand and global environmental problems. For the development of a molten carbonate fuel cell (MCFC), KEPCO started the project in 1993 to develop a 2 kW MCFC system and finished it at the end of 1996. In this project, $ASPEN^+$ was utilized to design the 2 kW MCFC generation system. Based on this simulation, a power generation system was designed and installed for operation and a long term test of internally manifolded 2 kW class MCFC stack. This stack has 20 cells with an effective electrode area of $1000\;cm^2$. It was run at 0.84 V and $150\;mA/cm^2$ and was operated for more than 3,250 hours continuously. This paper describes the system configuration and its control and measurement units. An analysis of the stack performance, the effect of gas utilization ratio, and the stack performance requirements are also discussed.

  • PDF

A Real Options Analysis on Fuel Cell Power Plant considering Mean Reverting Process of Electricity Price (전력가격 평균회귀성을 고려한 연료전지 발전의 실물옵션 분석)

  • Park, Hojeong;Nam, Youngsik
    • Environmental and Resource Economics Review
    • /
    • v.27 no.4
    • /
    • pp.613-637
    • /
    • 2018
  • Fuel cell power plant which has advantages as a distributed generation is influenced by high cost of investment and uncertainty of electricity price. This study suggests the model of real options which considers the irreversibility of investment in the fuel cell plant and the uncertainty of electricity price. Most models of real options assume the geometric Brownian motion for convenience, but this study develops the model for the feasibility analysis considering the mean reverting process of electricity price, with the closed form solution on the value of investment option. The result of the empirical analysis considering the data related to the fuel cell generation with the scale of 20MW and the domestic RPS circumstance represents that the investment is feasible without the uncertainty, and is not feasible with the uncertainty. This result implies that the political support as well as the improvement of profit system including revenue and cost are necessary for the activation of the fuel cell power plant.

Performance evaluation method for Solid Oxide Fuel Cell (고체 전해질형 연료전지의 특성평가법 연구)

  • Kim, G.Y.;Eom, S.W.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1389-1390
    • /
    • 1997
  • The object of this research is to develop various composing material for Solid Oxide Fuel Cell generation system, and to test single cell performance manufactured. So we try to present a guidance for developing mass power generation system. We concentrated on development of manufacturing process for cathode, anode and electrolyte.

  • PDF

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

Exergetic Analysis of Ammonia-fueled Solid Oxide Fuel Cell Systems for Power Generation (암모니아 활용 고체산화물 연료전지 발전시스템의 엑서지 분석)

  • Thai-Quyen Quach;Young Gyun Bae;Kook Young Ahn;Sun Youp Lee;Young Sang Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • Using ammonia as fuel for solid oxide fuel (SOFC) cells has become an attractive topic nowadays due to its high efficiency, environmental friendliness, and ease of storage and transportation. Several configurations of ammonia-fed SOFC systems have been proposed and investigated, demonstrating high electrical efficiency. However, to further enhance efficiency, it is crucial to understand the inefficient components of the system. The exergy concept is well-suited for this purpose, making exergetic analysis essential for ammonia-fed SOFC systems. This study conducts an exergetic analysis for three selected systems: a simple fuel cell system (FC), an anode off-gas recirculation system (RC-FC), and a recirculation system with water removal (RC-WR-FC). The results reveal that the exergetic efficiencies of the FC, RC-FC, and RC-WR-FC are 48.7%, 51.6%, and 58.4%, respectively. In all three systems, the SOFC stack is the main source of exergy destruction. However, other components with relatively low exergetic efficiency, such as the burner, air heat exchanger, and cooler/condenser, offer greater opportunities for improvement.