• Title/Summary/Keyword: Fuel cell generation

Search Result 526, Processing Time 0.023 seconds

Recent R&D Trends of Solid Oxide Fuel Cell Power Generation System (고체산화물 연료전지 발전시스템의 최근 연구 개발 동향)

  • Pyo, Seong-Soo;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.119-130
    • /
    • 2009
  • This article reviews recent R&D trends in SOFC development with an emphasis on industries that can produce the SOFC stack and power generation system. SOFC is an electrochemical device that can convert the chemical energy of fuel into the electrical energy with environment friendly system and high efficiency. SOFC power generation system could be classified as the portable power generation system, auxiliary power unit(APU), residential power generation(RPG) and large size distributed power generation. In the case of more than 10kW system, the major R&D trends are focused on the tubular type SOFC system with high efficient and long term stability to meet the commercialization of SOFC power generation system.

A Fuel Cell Generation System with a Fuel Cell Simulator

  • Lee Tae-Won;Jang Su-Jin;Jang Han-Keun;Won Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.55-61
    • /
    • 2005
  • A fuel cell (FC) system includes a fuel processor plus subsystems to manage air, water, and thermal energy, and electric power. The overall system is high-priced and needs peripheral devices. In this paper, a FC simulator is designed and constructed with the electrical characteristics of a fuel cell generation (FCG) system, using uses a simple buck converter to overcome these disadvantages. The characteristic voltage and current (V-I) curve for the FC simulator is controlled by a simplified linear function. In addition, to verify FCG system performance and operation, a full-bridge DC/DC converter and a single-phase DC/AC inverter were designed and constructed for FC applications. Close agreement between the simulation and experimental results confirms the validity and usefulness of the proposed FC simulator.

A Study on PWM Converter/Inverter Drive System by a Fuel Cell Simulator (연료전지 Simulator에 의한 PWM 컨버터/인버터 구동시스템에 관한 연구)

  • 이태원;장수진;김진태;구자성;원충연;김창현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.222-230
    • /
    • 2004
  • In this paper, a 3㎾ fuel cell generation system with an active fuel cell simulator has been proposed. The developed fuel cell simulator generates the actual voltage and current output characteristics of the Polymer Electrolyte Membrane Fuel Cell (PEMFC), so that the overall performance and the dynamics of the proposed system could be effectively examined and tested. In This paper, at first, the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design process of the fuel cell generation system is explained in detail. In addition, the validity of the proposed system has been verified lly the informative simulation and experimental result

High Efficiency Gas Turbine-Fuel Cell Hybrid Power Generation System (가스터빈-연료전지 혼합형 고효율 발전시스템)

  • Lee, Jin-Kun;Yang, Soo-Seok;Sohn, Jeong-L;Song, Rak-Hyun;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.347-353
    • /
    • 2001
  • A combined cycle, 'HYBRID', is emerging as a new power generation technology that is particularly suitable for the distributed power generation system, with high energy efficiency and low pollutant emission. Currently micro gas turbines and fuel cells are attracting a lot of attention to meet the future needs in the distributed power generation market. This hybrid system may have every advantages of both systems because a gas turbine is synergistically combined with a fuel cell into a unique combined cycle. The hybrid system is believed to become a leading runner in the distributed power generation market. This paper introduces a current plan associated with the development of the hybrid system which consists of a micro gas turbine and a solid-oxide fuel cell(SOFC).

  • PDF

Gas Turbine and Fuel Cell Hybrid System for Distributed Power Generation (분산발전을 위한 가스터빈-연료전지 하이브리드 시스템)

  • Kim, Jae Hwan;Sohn, Jeong L.;Ro, Sung Tack;Kim, Tong Seop
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.354-360
    • /
    • 2001
  • Hybrid energy system of fuel cell and gas turbine is discussed as the system to be used in the distributed power generation. Discussion is first directed to the distributed power generation system which is expected to be more popularly introduced both in urban and isolated areas. In the next some characteristic features of fuel cell and micro gas turbine are shortly described. In the last discussion is turn to the fuel cell and micro gas turbine hybrid system. In particular, performance characteristics of a representative SOFC/MGT hybrid system are investigated through the concept design at various power capacity levels.

  • PDF

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

Modeling of BLDC Motor Driving System for Platform Screen Door Control applied Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 승강장 스크린 도어 제어용 BLDC 전동기 구동 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.968-974
    • /
    • 2017
  • In this paper, modeling of brushless DC motor (BLDC) driving system for platform screen door control applied fuel cell power generation system has been proposed. At first the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design of BLDC motor driving system is studied and the overall performance and dynamics of the proposed system could be effectively examined by simulation. PSIM simulation program is implemented to verify the performance and compatibility of the fuel cell power generation system and BLDC motor control system modeling.

A PCS Power-sharing Operation Algorithm for Parallel Operation of Polymer Electrolyte Membrane Fuel Cell (PEMFC) Generation Systems (고분자 전해질 연료전지 발전 시스템의 병렬 운전을 위한 PCS 전력 분배 구동 알고리즘)

  • Kang, Hyun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1706-1713
    • /
    • 2009
  • In this paper, a parallel operation algorithm for high power PEMFC generation systems is proposed. According to increasing the capacity of fuel cell systems with several fuel cell stacks, the different dynamic characteristics of each fuel cell stack effect on imbalance of load sharing and current distribution, so that a robust parallel operation algorithm is desired. Therefore, a power-sharing technique is developed and explained in order to design an optimal distributed PEMFC generation system. In addition, an optimal controller design procedure for the proposed parallel operation algorithm is introduced, along with informative simulations and experimental results.

Enhancing Factors of Electricity Generation in a Microbial Fuel Cell Using Geobacter sulfurreducens

  • Kim, Mi-Sun;Cha, Jaehwan;Kim, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1395-1400
    • /
    • 2012
  • In this study, we investigated various cultural and operational factors to enhance electricity generation in a microbial fuel cell (MFC) using Geobacter sulfurreducens. The pure culture of G. sulfurreducens was cultivated using various substrates including acetate, malate, succinate, and butyrate, with fumarate as an electron acceptor. Cell growth was observed only in acetate-fed medium, when the cell concentrations increased 4-fold for 3 days. A high acetate concentration suppressed electricity generation. As the acetate concentration was increased from 5 to 20 mM, the power density dropped from 16 to $13mW/m^2$, whereas the coulombic efficiency (CE) declined by about half. The immobilization of G. sulfurreducens on the anode considerably reduced the enrichment period from 15 to 7 days. Using argon gas to create an anaerobic condition in the anode chamber led to increased pH, and electricity generation subsequently dropped. When the plain carbon paper cathode was replaced by Pt-coated carbon paper (0.5 mg $Pt/cm^2$), the CE increased greatly from 39% to 83%.

Electric power generation from treatment of food waste leachate using microbial fuel cell

  • Wang, Ze Jie;Lim, Bong Su
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.157-161
    • /
    • 2017
  • Simultaneous treatment of food waste leachate and power generation was investigated in an air-cathode microbial fuel cell. A TCOD removal efficiency of $95.4{\pm}0.3%$ was achieved for an initial COD concentration of 2,860 mg/L. Maximum power density ranged was maximized at $1.86W/m^3$, when COD concentration varied between 60 mg/L and 2,860 mg/L. Meanwhile, columbic efficiency was determined between 1.76% and 11.07% for different COD concentrations. Cyclic voltammetric data revealed that the oxidation peak voltage occurred at -0.20 V, shifted to about -0.25 V. Moreover, a reduction peak voltage at -0.45 V appeared when organic matters were exhausted, indicating that reducible matters were produced during the decomposition of organic matters. The results showed that it was feasible to use food waste leachate as a fuel for power generation in a microbial fuel cell, and the treatment efficiency of the wastewater was satisfied.