• 제목/요약/키워드: Fuel Supply

검색결과 1,002건 처리시간 0.031초

액화천연가스 연료 급유 중 발생하는 사고 평가 (Consequence Assessment for Emergency Release of LNG Bunkering)

  • 박용태;김기정;이재익
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2013년도 특별논문집
    • /
    • pp.94-96
    • /
    • 2013
  • Since LNG has explosive properties and difficulty to handle, it was avoided using LNG as fuel. However, recently LNG has been considered as alternative fuel of HFO. Several LNG fuel supply system has developed. Furthermore, STX ONS is developing LNG fuel bunkering system and bunkering shuttle. Bunkering shuttle carries out refueling LNG fuel while LNG fuel ship is on cargo work. In case of emergency, bunkering shuttle breakaway from the ship but a little amount of LNG falls down on deck. It can disperse to cargo work area also can explode. In this case LNG dispersed on deck was not considerable.

  • PDF

4기통 전기점화기관의 혼합기 불균일화가 기관성능에 미치는 영향 (Effect of Non-Uniform Mixture on the 4 Cylinder S.I.Engine Performance)

  • 김물시;진성호;박경석;이용길
    • 한국자동차공학회논문집
    • /
    • 제2권4호
    • /
    • pp.72-79
    • /
    • 1994
  • In an automotive spark ignition, it is important to form the proper mixture(air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel is attached on the inside wall of the intake manifold for unadequate atomization by fuel injection system, it brings a bad effect on combustion and exhaust caused by nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in an intake manifold on combustion characteristics and engine performance.

  • PDF

연료전지 축전지 하이브리드 동력원의 접속 특성 분석 (Load Analysis of the FuelCell/Battery Hybrid Power System)

  • 이봉도;이원용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3081-3083
    • /
    • 2000
  • Fuel cell/battery hybrid power systems were studied to develop high efficient zero-emission fuel cell electric vehicles, Fuel cells were used as an auxiliary energy source and batteries were used as a transient power source. The fuel cell system is used to supply the average power demand. Dynamic response of the hybrid systems was simulated using PSPICE program and also tested experimentally, The results can be used to design the interface module and to determine the power requirement between the fuel cell unit and the battery pack.

  • PDF

배열 이용형 흡수식 사이클 특성평가 (Characteristics Evaluation of Absorption Cycles using the Waste Heat)

  • 윤정인;권오경;문춘근
    • 태양에너지
    • /
    • 제18권4호
    • /
    • pp.23-32
    • /
    • 1998
  • Fuel cells supply electric power and heat at work, and their exhaust gas is comparatively clear. So they are in the limelight as one of the co-generation systems which behave friendly with the environment. Fuel cells discharge both steam and hot water. Accordingly, if we combine absorption heat pump driven by waste heat with fuel cells, we can construct an advanced energy conserving system. The purpose of this study is the objective for evaluating the possibilities of effectively utilizing waste heat of fuel cells as a heat source for the single and double effect absorption systems. Simulation studies on single and double effect absorption have been performed for water/lithium-bromide pair. The effectiveness of introducing a waste heat source of fuel cells is demonstrated. The result of this study showed that total efficiency was about 85% at rated operation and about 75% at 75% load operation. Absorption cycle moved to more strong concentration when fuel cell operated at 75% load.

  • PDF

바이오매스 에너지화: 청정 연소를 위한 신재생 연료 생산 공정 (Biomass to Energy: Renewable Fuel Production Processes for Clean Combustion)

  • 정재용;김영두;양원;이은도;정수화;방병열;문지홍;황정호;장원석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.285-285
    • /
    • 2015
  • Utilization of biomass as a substitute fuel for conventional energy systems have been grown larger everyday in the world. In particular, co-firing of biomass in a large coal power plant are common in Korea after the introduction of RPS since 2012, and the application of biomass-derived fuel is now spreading to district heating and power, industrial energy supply, and transportation sectors. For biomass to energy, appropriate conversion process is needed to satisfy the fuel requirements of a specific energy system. In this study, various kinds of thermochemical conversion technologies will be presented for renewable fuel productions from biomass.

  • PDF

스마트 무인기 연료 시스템 설계에 관한 연구 (Fuel System Design of the Smart UAV)

  • 공창덕;강명철;이창호
    • 한국추진공학회지
    • /
    • 제9권2호
    • /
    • pp.54-61
    • /
    • 2005
  • 본 논문에서는 현재 개발 중인 스마트 무인기 연료 시스템의 기본설계 결과를 제시하고 이에 대한 신뢰도 분석을 수행하였다. 시스템 요구를 바탕으로 연료 시스템을 구성한 후, 이에 필요한 부스트펌프, 제트펌프, 도관, 벤트 시스템 등 각 구성품에 대한 설계를 수행하였고 참고 중량 데이터를 이용하여 연료 시스템의 중량예측을 수행하였다. 이를 바탕으로 연료 시스템의 신뢰도를 분석하여 신뢰도 목표를 만족함을 확인하였다.

Fuel-Flexible Anode Architecture for Solid Oxide Fuel Cells

  • Hwan Kim;Sunghyun Uhm
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.226-240
    • /
    • 2023
  • This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives to traditional energy sources, as their use in SOFCs can help meet the growing demands for energy. We cover several types of materials, including perovskite structures, high-entropy alloys, proton-conducting ceramic materials, anode on-cell catalyst reforming layers, and anode functional layers. In addition, we review the performance and long-term stability of cells based on these anode materials and assess their potential for commercial manufacturing processes. Finally, we present a model for enhancing the applicability of fuel cell-based power generation systems to assist in the realization of the H2 economy as the best practice for enabling distributed energy. Overall, this study highlights the potential of SOFCs to make significant progress toward a sustainable and efficient energy future.

발전용 바이오중유의 혼합비율에 따른 배출가스 특성 연구 (A Study on the Emission Characteristics for Blended Power Bio-Fuel Oil)

  • 하종한;전철환;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.484-492
    • /
    • 2015
  • As our government is actively introducing the RPS (Renewable Portfolio Standards) as a national renewable energy obligation policy, power producers are using the various renewable energy to meet the RPS supply quota since 2012. Recently, it is appling to use power bio-fuel oil in bio-fuel oil demonstration project with power companies. In general, power bio-fuel oils are composed of mixture products of vegetable oil, animal fat, fatty acid ester and waste oil. It is already developing for a power plant as a renewable energy abroad. In Korea, it is studying a 100% combustion and blended combustion of heavy fuel oil and bio-fuel oil. In this study, we investigated fuel characteristics of mixed power bio-fuel oil and its emission performance. Especially, it was reduced emissions of bio-oil in industrial boilers due to bio-fuel properties as compare with fuel oil.

Experimental and theoretical justification of passive heat removal system for irradiated fuel assemblies of the nuclear research reactor in a spent fuel pool

  • Ta Van Thuong;O.L. Tashlykov;S.M. Glukhov;D.E. Shumkov;Yu.V. Volchikhina
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2088-2095
    • /
    • 2023
  • The safety of nuclear installations is largely determined by the tightness of fuel elements cladding. As the Fukushima nuclear accident showed, the main task in case of loss of power supply is to ensure reliable removal of residual heat release from spent fuel pool (SFP) with irradiated fuel assemblies (IFAs). The paper presents the results of calculated-experimental studies and thermal-hydraulic modeling of temperature storage modes of IFAs in SFP. Experimental studies of SFP's temperature regime and calculated evaluation of residual heat removal due to the thermal conductivity of building structures surrounding the SFP were performed. To ensure the safe operation of research reactors, it's necessary to know the IFA's residual heat power (RHP) in the reactor and SFP, which is determined depending on the operating time of fuel assemblies (FAs) and the IFAs calculated holding time. The FAs operating time depends on the reactor energy output. The IFAs calculated holding time is determined by the fuel burnup, U-235 mass in the fuel, and reactor utilization factor. The IFAs fuel burnup was calculated using the MCU-PTR program. Also presented are the RHP's calculation results using some of the empirical dependencies. The concept of a passive heat removal system (PHRS) based on thermosyphon's operating principle was proposed.

액상분사식 LPG엔진 인젝터의 후적 및 아이싱 특성에 관한 연구 (A Study of Droplets and Icing Characteristics on Injector in a Liquid Phase LPG Injection Engine)

  • 김창업;최교남;강건용;박철웅
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.38-44
    • /
    • 2007
  • Since the Liquid Phase LPG injection (LPLI) system has Advantages in power generation and emission characteristics compared to the mixer-type fuel-supply system, a variety of studies regarding LPLi system has been conducted and its applications are made in automobile industry. However, the heat extraction due to the evaporation of liquid fuel, causes not only a post-accumulation of fuel but also an icing phenomenon which is a frost of moisture in the air around the nozzle tip. Since there exists a difficulty in the accurate control of air fuel ratio in both fuel supply systems, it can result in poor engine performance and a large amount of harmful emissions. This research examines the characteristics of icing phenomenon and develops anti-icing bushing to prevent an icing on the surface of the injection tip. It was found that n-butane, which has a relatively high boiling point ($-0.5^{\circ}C$), was a main species of post-accumulation. Also the results show that the post-accumulation problem was allevaited the utilization of a large inner to outer bore ratio and smooth surface roughness. In addition, an icing phenomenon and its formation process were found to be mainly affected by the humidity and the temperature of inlet air in an inlet duct. Also, it was observed that an icing phenomenon is lessened using aluminum bushing whose end coincides with the end of fuel injection tip in length.

  • PDF