• Title/Summary/Keyword: Fuel Rod

Search Result 489, Processing Time 0.023 seconds

Preliminary Analysis of In-reactor Behavior of Three MOX Fuel Rods in the Maiden Reactor

  • Koo, Yang-Hyun;Lee, Byung-Ho;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.10a
    • /
    • pp.248.1-248
    • /
    • 1999
  • Preliminary analysis of in-reactor thermal performance of three MOX fuel rods, which are going to be irradiated in the Halden reactor beginning in the first Quarter of the year 2000 under the framework of the OECD Halden Reactor Programme, have been conducted by using the computer code COSMOS to ensure their safe operation. Parametric studies have been carried out to investigate the effect of uncertainties on in-reactor behavior by considering the four kinds of uncertainties; thermal conductivity, linear power, manufacturing parameters, and model constants. The analysis shows that, in the case of annular MOX -1 fuel, calculation results for thermal performance vary widely depending on the selection of model constants for fission gas release (FGR). On the contrary, the thermal performance of solid MOX - 3 fuel does not depend on the choice of FGR constants to a large extent as MOX-I, because the fuel temperature is very high in the MOX-3 irrespective of the choice of FGR constants and hence the capacity of grain boundaries to retain gas atoms is not large enough to accommodate the number of gas atoms reaching the grain boundaries. It is planned that when the data on microstructure and thermal conductivity for each type of MOX fuel are available, new analysis will be made using these information. In addition, FGR model constants will be derived from the measured fuel centerline temperature, rod internal pressure and other related data.

  • PDF

Realistic thermal analysis of the CANDU spent fuel dry storage canister

  • Tae Gang Lee;Taehyeon Kim;Taehyung Na;Byongjo Yun;Jae Jun Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4597-4606
    • /
    • 2023
  • Thermal analysis of the CANDU spent fuel dry storage canister is very important to ensure the integrity of the spent fuel. The analyses have been conducted using a conservative approach, with a particular focus on the peak cladding temperature (PCT) of the fuel rods in the canister. In this study, we have performed a realistic thermal analysis using a computational fluid dynamics (CFD) code. The canister contains 9 fuel bundle baskets. A detailed analysis of even a single basket requires significant computational resources. To overcome this challenge, we replaced each basket with an equivalent heat conductor (EHC), of which effective thermal conductivity (ETC) is developed from the results of detailed CFD calculations of a fuel bundle basket. Then, we investigated the effects of some conservative models, ultimately aiming at a realistic analysis. The results revealed: (i) The influence of convective heat transfer in the basket cannot be ignored, but it's less significant than expected. (ii) Modeling of the lifting rod is crucial, as it plays a decisive role in axial heat transfer at the center of the canister and significantly reduces the PCT. (iii) Convection within the canister is very important, as it not only reduces the PCT but also shifts its location upwards.

Reference Spent Nuclear Fuel for Pyroprocessing Facility Design (파이로공정 시설 개념설계를 위한 기준 사용후핵연료 선정)

  • Cho, Dong-Keun;Yoon, Seok-Kyun;Choi, Heui-Joo;Choi, Jong-Won;Ko, Won-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • An estimation has been made for inventories and characteristics of spent nuclear fuel(SNF) to be generated from existing and planned nuclear power plants based on the 3rd Basic Plan for Electric Power Demand and Supply. The characteristics under consideration in this study are dimensions, a fuel rod array, a weight, $^{235}U$ enrichment, and the discharge burnup in terms of fuel assembly. These are essentially needed for designing a pyroprocessing facility. It is appeared that the anticipated quantity by the end of 2077 is about 23,000 tU for PWR spent nuclear fuel. It is revealed that the proportion of SNF with the initial $^{235}U$ enrichment below 4.5 weight percent(wt.%) is approximately 95 % in total. For SNF with 16$\times$16 fuel rod array the proportion is expected approximately 74% in total. It appears that the average burnup of SNF will be 55 GWd/tU after the medium and/or latter part of 2010s while the average burnup is 45 GWd/tU at present. Finally, a requirement in terms of reference SNF for designing the pyroprocessing facility has been derived from the above-mentioned results. The anticipated SNF seems to be 16$\times$16 Korean Standard Fuel Assembly with a cross section of 21.4 cm$\times$21.4 cm, a length of 453 cm, a mass of 672 kg, the initial $^{235}U$ enrichment of 4.5 wt.%, and the discharge burnup of 55 GWd/tU.

  • PDF

A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th)O2 fuels

  • Uguru, Edwin Humphrey;Sani, S.F.Abdul;Khandaker, Mayeen Uddin;Rabir, Mohamad Hairie;Karim, Julia Abdul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1099-1109
    • /
    • 2020
  • The performance of gadolinium burnable absorber (GdBA) for reactivity control in UO2 and (U, Th)O2 fuels and its impact on spent fuel characteristics was performed. Five fuel assemblies: one without GdBA fuel rod and four each containing 16, 24, 34 and 44 GdBA fuel rods in both fuels were investigated. Reactivity swing in all the FAs with GdBA rods in UO2 fuel was higher than their counterparts with similar GdBA fuel rods in (U, Th)O2 fuel. The excess reactivity in all FAs with (U, Th)O2 fuel was higher than UO2 fuel. At the end of single discharge burn-up (~ 49.64 GWd/tHM), the excess reactivity of (U, Th) O2 fuel remained positive (16,000 pcm) while UO2 fuel shows a negative value (-6,000 pcm), which suggest a longer discharge burn-up in (U, Th)O2 fuel. The concentration of plutonium isotopes and minor actinides were significantly higher in UO2 fuel than in (U, Th)O2 fuel except for 236Np. However, the concentration of non-actinides (gadolinium and iodine isotopes) except for 135Xe were respectively smaller in (U, Th)O2 fuel than in UO2 fuel but may be two times higher in (U, Th)O2 fuel due to its potential longer discharge burn-up.

POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

  • Ryu, H.J.;Park, J.M.;Jeong, Y.J.;Lee, K.H.;Lee, Y.S.;Kim, C.K.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.847-858
    • /
    • 2013
  • Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea) in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4-5 $g-U/cm^3$ were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr), additional protective coatings (silicide or nitride), and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

Performance evaluation of the Floating Absorber for Safety at Transient (FAST) in the innovative Sodium-cooled Fast Reactor (iSFR) under a single control rod withdrawal accident

  • Lee, Seongmin;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1110-1119
    • /
    • 2020
  • The Floating Absorber for Safety at Transient (FAST) is a safety device used in the innovative Sodium-cooled Fast Reactor (iSFR). The FAST insert negative reactivity under transient or accident conditions. However, behavior of the FAST is still unclear under transient conditions. Therefore, the existing Floating Absorber for Safety at Transient Analysis Code (FASTAC) is improved to analyze the FAST movement by considering the reactivity and temperature distribution within the reactor core. The current FAST system is simulated under a single control rod withdrawal accident condition. In this investigation, the reactor thermal power does not return to its initial thermal power even if the FAST inserts negative reactivity. Only a 9 K of coolant temperature margin, in the hottest fuel assembly at EOL, can lead to unnecessary insertion of the negative reactivity. On the other hand, the FASTs cannot contribute to controlling the reactivity when normalized radial power is less than 0.889 at BOL and 0.972 at EOL. These simulation results suggest that the current FAST design needs to be optimized depending on its installed location. Meanwhile, the FAST system keeps the fuel, cladding and coolant temperatures below their limit temperatures with given conditions.

Assessment of SCDAP Using the Full-Length High-Temperature FLHT-2 Test (FLHT-2 실험결과를 이용한 SCDAP코드 평가)

  • Park, Choon-Kyung;Park, Jong-Hwa;Yoo, Kun-Jung;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.54-64
    • /
    • 1988
  • This paper assesses the models in the SCDAP code using the results of the FLHT-2 test. Calculations show that the SCDAP correctly predicts Ire temperatures, oxidation front movement, overall hydrogen generation and peak generation rate, internal fuel rod pressure, and cladding rupture due to ballooning. A comparison of the calculated results with measured data shows that two phase level is underpredicted, and that radiation heat transfer and auto-catalytic reaction temperature of zircaloy are overpredicted. These models are recommended to be modified. The analysis also shows that the simulation of the gap in a fuel rod improves the code prediction on core damage progression.

  • PDF

FUEL PERFORMANCE CODE COSMOS FOR ANALYSIS OF LWR UO2 AND MOX FUEL

  • Lee, Byung-Ho;Koo, Yang-Hyun;Oh, Jae-Yong;Cheon, Jin-Sik;Tahk, Young-Wook;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.499-508
    • /
    • 2011
  • The paper briefs a fuel performance code, COSMOS, which can be utilized for an analysis of the thermal behavior and fission gas release of fuel, up to a high burnup. Of particular concern are the models for the fuel thermal conductivity, the fission gas release, and the cladding corrosion and creep in $UO_2$ fuel. In addition, the code was developed so as to consider the inhomogeneity of MOX fuel, which requires restructuring the thermal conductivity and fission gas release models. These improvements enhanced COSMOS's precision for predicting the in-pile behavior of MOX fuel. The COSMOS code also extends its applicability to the instrumented fuel test in a research reactor. The various in-pile test results were analyzed and compared with the code's prediction. The database consists of the $UO_2$ irradiation test up to an ultra-high burnup, power ramp test of MOX fuel, and instrumented MOX fuel test in a research reactor after base irradiation in a commercial reactor. The comparisons demonstrated that the COSMOS code predicted the in-pile behaviors well, such as the fuel temperature, rod internal pressure, fission gas release, and cladding properties of MOX and $UO_2$ fuel. This sufficient accuracy reveals that the COSMOS can be utilized by both fuel vendors for fuel design, and license organizations for an understanding of fuel in-pile behaviors.

An Evaluation of Nuclear Design Characteristics of Duplex Burnable Absorber Rods (이중구조 가연성 독봉의 핵설계 특성 평가)

  • 이대진;김명현;송근우;정연호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.71-79
    • /
    • 2002
  • Nuclear design characteristics of duplex burnable poison rod were evaluated based on 24 month cycle fuel for Korean Standard Nuclear Plant. A fuel assembly with duplex burnable poison rod was designed for an equivalent assembly to 16 gadolinia BPs. Duplex BP is composed of inner region of natural U-12wt%Gd$_2$O$_3$ and outer shell of 4.95wt%UO$_2$-2wt%Er$_2$O$_3$. In order to compare this duplex option, assemblies with 140 erbia pins were designed as an alternative option. The variation of k-infinitive, rod worth, pin peaking and MTC were compared. Duplex BP had the better neutronic performance than gadolinia BP in all parameters. However, Duplex BP was worse than erbia BP in the aspect of safety.

  • PDF

The Grid Strap Vibration Characteristics of the 5×5 Nuclear Fuel Mock-up (5×5 핵연료 모의 집합체의 지지격자 스트랩 진동특성)

  • Kim, Kyoung-Hong;Park, Nam-Gyu;Kim, Kyoung-Ju;Suh, Jung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.619-625
    • /
    • 2012
  • Since the fuel is always exposed to turbulent flow, the grid strap shows flow induced vibration characteristics that impact on the nuclear fuel soundness. The dynamic behavior of grids in nuclear fuels is quite complex, since two pairs of spring and dimple support are contacted with rods by friction in the limited space. This paper focuses on investigation of the grid strap(test fuel strap, TFS) vibration in one cell. TFS consists of a single spring and double dimples. To identify the grid strap vibration, modal analysis of the strap is performed using finite element method(FEM). Modal testing on a $5{\times}5$ grid structure without rods is performed. The modal testing results are compared to analytic results. In addition, random test considering rod effect is performed about a $5{\times}5$ grid with rods under real contact condition in the air. Finally, the strap vibration of a $5{\times}5$ fuel bundle in investigation of flow induced vibration(INFINIT) facility is measured in real fluid velocity condition without heating. It is shown that modal frequencies from the test are almost equal to those peak frequencies in the INFINIT test.