• Title/Summary/Keyword: Fuel Rich Combustion

Search Result 178, Processing Time 0.023 seconds

The Pollutant Emissions Characteristics of Lean-Rich Combustion System with Exhaust Gas Reciculation (EGR 시스템을 적용한 린-리치 연소시스템의 공해물질 배출 특성 연구)

  • Oh, Wheesung;Yu, Byeonghun;Kim, Jong-Hyun;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.233-234
    • /
    • 2014
  • Lean-rich combustion system was composed both fuel-lean and fuel-rich flame at once. Each of fuel-lean and fuel-rich combustion types to reduce Thermal $NO_x$ and obtain flame stability. This study was confirmed a stability of flame through variation of flame shape that EGR was applied and compared the emission characteristics of EGR lean-rich combustion system to normal premixed combustion system at real condition to review a utility of the system. As a result, emission index of $NO_x$ and CO generated from EGR lean-rich combustion system at global equivalence ratio is 0.85 just half level($NO_x$ 0.31 g/kg, CO 0.08g/kg) compared to the amount generated from normal premixed combustion system at equivalence ratio is 0.78.

  • PDF

Status and perspectives of the advanced catalytic combustion (촉매연소의 신기술 동향)

  • Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.299-308
    • /
    • 2003
  • This paper provides a review of the status and of the perspectives of advanced catalytic combustion for ultra clean combustion of gas turbines and for industrial combustors. The development of catalytic materials and their combustion techniques for gas turbines are briefly reported. The fuel-rich approaches to catalytic combustion are mentioned for a new technology of thermal- and fuel-NOx control. The fuel-rich catalytic combustion are also applicable to the combustor of ceramic gas turbine, and to the combustion of biomess and municipal waste sludge. Some extended technologies of combustion synthesis are introduced for the synthesis of carbon nanotube and of Perovskite combustion catalysts

  • PDF

Reducing technology of fuel-NOx generation using fuel-rich/-lean catalytic combustion (연료(燃料) 과농(過濃)/희박(稀薄) 조절(調節)의 촉매연소(觸媒燃燒)에 의한 Fuel-Nox 저감(低減) 기술(技術))

  • Kang, S.K.;Lee, S.J.;Ryu, I.S.;Shin, H.D.;Han, H.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.55-62
    • /
    • 2006
  • A two-step fuel-rich/fuel-lean catalytic combustion seems to be one of the most effective methods to control simultaneously the NO generation and the hydrocarbon (HC) conversion from fuel-bound nitrogen. By controlling equivalent air ratio for maintaining fuel-rich and fuel-lean condition over each catalytic layer, space velocity, inlet temperature, and catalyst component, the HCand ammonia conversion efficiency higher than 95% could be achieved, with ammonia conversion to NO remaining below 5%. The experimental results wouldbe applied to the combustion of land fill gas and to gasified refuse-derived fuels as a method of minimizing NO generation.

  • PDF

The Pollutant Emission Characteristics of Lean-Rich Combustion System with Exhaust Gas Recirculation (배기가스 재순환을 적용한 희박-과농 연소시스템의 공해물질 배출특성 연구)

  • Oh, Wheesung;Lee, Chang-Eon;Yu, Byeonghun
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the CH4/air lean-rich combustion system with exhaust gas recirculation (EGR) was investigated to explore the potential for lowering pollutant emissions. To achieve this purpose, experiments of lean-rich combustion system with EGR were conducted to measure the changes in the characteristics of the pollutant emission and flame shape with various equivalence ratios and EGR rates. Here, this study was applied to the fuel distribution ratio of 3:1 for the formation of the lean and rich flames. Additionally, the results were compared with $CH_4$/air lean premixed combustion system. The results show that flame shape of lean-rich combustion system was determined by lean and rich equivalence ratios (${\Phi}_L$ and ${\Phi}_R$) and stratified flame was formed with increasing ${\Phi}_R$. According to the pollutant emission characteristics based on experimental results, the NOx and CO emission index (EINOx and EICO) decreased with increasing EGR rate. Especially, in the range needed to form a stable flame, the reduction rates of EINOx and EICO were approximately 47% and 48% for an EGR rate of 25%, global equivalence ratio of 0.85 and ${\Phi}_L$ of 0.80 compared with lean premixed combustion system (${\Phi}$ = 0.78).

A Study on the Stability of Rich/Lean Methane Premixed Flame (과농/희박 메탄 예혼합화염의 안정성에 관한 연구)

  • Lee, Won-Nam;Seo, Dong-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.170-177
    • /
    • 2005
  • The fuel-lean premixed flame has been considered one of the most efficient ways to reduce $NO_X$ emission during a combustion process. However, it is difficult to achieve stable fuel-lean premixed flames over the wide range of equivalence ratios: therefore, the application of fuel-lean flames to a practical combustion system is rather limited. In this study, the stability characteristics of fuel-lean flames stabilized by fuel-rich flames are investigated experimentally using a slot burner as a part of the basic research for practical application such as lean burn engines. Spontaneous emission of radical species were examined to understand the stability mechanisms of rich-lean premixed flames. The presence of fuel-rich flames could significantly lower the lean limit of fuel-lean flames. The stability of a fuel-lean flame is enhanced with the increase of fuel flow rate in a fuel-rich flame; how ever, it is not sensitive to the equivalence ratio of fuel-rich flames in the range of 1.2-2.4. The mechanisms of stable rich-lean premixed flames could be understood based on the characteristics of triple flame.

Fuel-Rich Combustion Characteristic of a Combined Gas Generator (혼합식 가스발생기의 연료과농 연소특성)

  • Lee, Dongeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.593-600
    • /
    • 2015
  • In this study, a combined hybrid rocket system is newly introduced which has characteristics of both gas generators and afterburner type hybrid rockets. In particular, a combined gas generator utilizing solid fuel and liquid/gas oxidizer was designed as a primary combustor of the system. Combustion tests were carried out with various equivalence ratio affected by parameters such as fuel length, oxidizer flow rate, fuel port diameter and fuel type. In general, fuel-rich gas generator produces low combustion gas temperature to meet the temperature requirement and the target temperature was transiently set less than 1600 K. Since it was found that controlling parameters showed limited effects on the change of equivalence ratio, mixture of $O_2$ and $N_2$ as an oxidizer was additionally introduced. As a result, a combined gas generator successfully produced combustion gas temperature of less than 1600 K Future studies will carry out more combustion tests to attain fuel-rich combustion gas temperature less than 1200 K, which was a temperature requirement of a gas generator system in the previous studies.

Flame Structure of Fuel-rich $CH_4/O_2/N_2$ Premixed Flame with Oxygen Enrichment (과농 조건에서 산소부화된 $CH_4/O_2/N_2$ 예혼합화염의 화염구조)

  • Lee, Ki-Yong;Kwon, Young-Suk
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • Numerical simulations are conducted at atmospheric pressure in order to understand the effect of the oxygen enrichment level on structure of $CH_4/O_2/N_2$ premixed flames. Under several equivalence ratios the flame speeds are calculated and compared with those obtained from the experiments, the results of which are in good agreement. The effects of the oxygen enrichment are investigated on flames under fuel-rich conditions. As the oxygen enrichment level is increased from 0.21 to 1, the flame speed and the temperature are increased. The emission index of $CO_2$ is decreased in cases of flames for fuel rich mixtures, so the efficiency of combustion may be decreased. The maximum emission index of NO is obtained for 0.6 of the oxygen enrichment level.

  • PDF

The effect of water addition on combustion efficiency in premixed flame (물添加가 豫混合火焰의 燃燒效率에 미치는 影響)

  • 김성환;오신규;채재우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.819-827
    • /
    • 1987
  • The purpose of the present investigation is to examine the effect of water addition on combustion efficieny. In this research, fuel and additive water are injected into a burner in the form of vapors through separate needle valves, the flame temperature and concentrations of soot, CO and unburned hydrocarbons were measured in a premixed flame. The results are obtained to be: In the fuel lean region, the reduction rate of CO, soot and HC by water injection increases slightly, but there is no change in the combustion efficiency. On the other hand, in the fuel rich region, the reduction rate of CO, Soot and HC by water injection increases more than that of the fuel lean region. Accordingly, combustion efficiency increases.

Combustion Characteristics of Fuel-rich Gas Generator (불완전연소 가스발생기 연소특성 연구)

  • Choi, Ho-Jin;Hyun, Hyung-Soo;Byun, Jong-Ryul;Park, Eui-Yong;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.375-378
    • /
    • 2011
  • The combustion characteristics of fuel-rich gas generator which could be adopted to Ducted Rocket propulsion system is investigated. The gas generator is designed considering the design requirements of propulsion system then solid fuel, which is developed by reducing the contents of oxidizer and increasing the contents of metallic solid particle, is loaded in the manufactured gas generator. The results of combustion test shows the necessity of the special analysis tool for estimating the gas generator performance where multi-phase flow of fuel-rich gas exists.

  • PDF

A Study on Emission Reductions of Diesel Engine Using Plasmatron Fuel Converter (플라즈마트론을 이용한 디젤 엔진의 매연저감에 관한 연구)

  • Ki, Ho-Beom;Kim, Bong-Soo;Kwak, Yong-Hwan;Kim, Woo-Hyung;Lim, Won-Kyung;Chae, Jae-Ou
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.104-109
    • /
    • 2006
  • Improvements in internal combustion engine and aftertreatment technologies are needed to meet future environmental quality goals. Plasmatron fuel converters provide a rapid response, compact means to transform a wide range of hydrocarbon fuels (including gasoline, natural gas and diesel fuel) into hydrogen-rich gas. Hydrogen-rich gas can be used as an additive to provide NOx reductions of more than 80% in diesel engine vehicles by enabling very lean operation or heavy exhaust engine recirculation. For diesel engines, use of compact plasmatron reformers to produce hydrogen-rich gas for the regeneration of NOx absorber/absorbers and particulate traps for diesel engine exhaust after-treatment could provide significant advantages. Recent tests of conversion of diesel fuel to hydrogen-rich gas using a low current plasmatron fuel converter with non-equilibrium plasma features are described.

  • PDF