• Title/Summary/Keyword: Fuel Reformer

Search Result 189, Processing Time 0.028 seconds

Detailed Design of Power Conversion Device Hardware for Realization of Fuel Cell Power Generation System (연료전지 발전시스템 구현을 위한 전력변환장치 하드웨어 세부설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • In addition to the stack that directly generates electricity by the reaction of hydrogen and oxygen, the fuel cell power generation system has a reformer that generates hydrogen from various fuels such as methanol and natural gas. It also consists of a power converter that converts the DC voltage generated in the stack into a stable AC voltage. The fuel cell output of such a system is direct current, and in order to be used at home, an inverter device that converts it into alternating current through a power converter is required. In addition, a DC-DC step-up converter is used to boost the fuel cell voltage to about 30~70V, which is the inverter operating voltage, to about 380V. The DC-DC step-up converter is a DC voltage variable device that exists between the fuel cell output and the inverter. Accordingly, since a constant output voltage of the converter is generated in response to a change in the output voltage of the fuel cell, the inverter can receive constant power regardless of the voltage change of the fuel cell. Therefore, in this paper, we discuss the detailed hardware design of the full-bridge converter, which is the main power source of the inverter that receives the fuel cell output voltage (30~70V) as an input and is applied to the grid among the members of the fuel cell power generation system.

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming (바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구)

  • Byungjin Lee;Subeen Wi;Dongkyu Lee;Sangyeon Hwang;Hyoungwoon Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2023
  • For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

Characteristics of the Carbon Capture and Utilization System in Methanol Fuel Propulsion Ships Based on the Hydrogen Fuel Cell Hybrid System (수소 연료전지 하이브리드 시스템 기반 메탄올 연료추진 선박에서 CCU 적용에 따른 시스템 특성 분석)

  • YoonHo Lee;JunHo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.239-251
    • /
    • 2024
  • In this study, a hydrogen fuel cell process based on methanol was developed to reduce greenhouse gas emissions. In Case1, the methanol fuel engine system was designed to investigate the emission of exhaust gas when methanol was supplied as fuel instead of gasoline to the engine. In Case2, a hydrogen fuel cell system was designed by adding a methanol reforming system to Case1. This hybrid system produced gray hydrogen and combined the output of the engine and fuel cell to drive the ship. However, gray hydrogen emits carbon in the process of producing hydrogen. To address this problem, a carbon capture and utilization (CCU) system was added to Case3. The CO2 of the flue gas discharged from Case2 was synthesized with gray hydrogen to produce blue methanol. The results of the case studies revealed that the optimal operating conditions were 220 ℃, 500 kPa, SCR = 1.0, and flow ratio = 0.7. The system of Case3 reduced carbon emissions by 42% compared with that Case1. Thus, the hybrid system of Case3 could considerably reduce the ship's CO2 emissions.

Characteristics of Methanol-O2 Catalytic Burner according to Oxidant Supply Method (산화제 공급 방법에 따른 메탄올-산소 촉매연소기 특성)

  • JI, HYUNJIN;LEE, JUNGHUN;CHOI, EUNYEONG;YANG, SUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.82-88
    • /
    • 2020
  • Recently, a fuel reforming plant for supplying high purity hydrogen has been studied to increase the operation time of underwater weapon systems. Since steam reforming is an endothermic reaction, it is necessary to continuously supply heat to the reactor. A fuel reforming plant needs a methanol-O2 catalytic burner to obtain heat and supply heat to the reformer. In this study, two types of designs of a catalytic burner are presented and the results are analyzed through the experiments. The design of the catalytic burner is divided into that the O2 supply direction is perpendicular to the methanol flow direction (Design 1) and the same as the methanol flow direction (Design 2). In case of Design 1, backfire and flame combustion occurred in the mixing space in front of the catalyst, and in the absence of the mixing space, combustion reaction occurred only in a part of the catalyst. For above reasons, Design 1 could not increase the exhaust gas temperature to 750℃. In Design 2, no flashback and flame combustion were observed, the exhaust gas could be maintained up to 750℃. However, the O2 distributor was exposed to high temperatures, resulting in thermal damage.

Thermal Behaviors and Reaction Characteristics of an Integrated Reactor with Catalytic Combustion-Reforming According to Operation Conditions (운전조건 변경에 따른 통합형 촉매연소-개질반응기의 열적 거동 및 반응 특성)

  • Ghang, Tae-Gyu;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.641-648
    • /
    • 2011
  • Off-gases emitted from the anode of a molten carbonate fuel cell (MCFC) at high temperatures for power generation are used as fuel in catalytic combustion. The heat generated in the catalytic combustor is utilized as the heat for the endothermic reaction required for steam reforming. Among the various operational conditions of the integrated reactor, we varied the inlet gas compositions of the catalytic combustor according to fuel utilization in the MCFC and the ratio of steam to carbon in the reformer. Subsequently, the thermal behaviors and reaction characteristics of the integrated reactor were investigated experimentally. The fundamental data from this experimental study will be useful for the design and fabrication of a more practical integrated reactor in the future.

Safety Performance Evaluation of Technical Independence 5kW Class Fuel Cell System (기술자립형 5kW급 건물용 연료전지시스템 안전성능 평가)

  • Lee, Jungwoon;Kim, Younggyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.82.1-82.1
    • /
    • 2011
  • 최근 국내에서 발생된 대규모 정전사태로 인해 안정적인 전력공급에 대한 국민들의 요구가 커져, 지난 3월 일본 후쿠시마 원전사고 이후 다시 한번 분산전원에 대한 필요성이 대두되어지고 있다. 여러 분산전원 중 연료전지는 다른 에너지원에 비해 에너지의 지속성이 우수하여 가장 안정적인 분산전원 형태의 하나이다. 이에 따라 국내의 경우 우수한 도시가스 인프라로 인해 건물용 연료전지라는 신기술에 대한 국민의 수용성은 점점 높아질 것으로 기대된다. 현재 건물용 연료전지의 경우, 주로 1kW급 연료전지가 시범보급되어 각 가정에 설치되어지고 있으나, 상가, 주유소 및 편의점 등의 상업시설과 생활관 및 소형빌라 등의 집단 주거시설 같은 1kW급 보다 용량을 더 필요로 하는 응용처에 국내에서 개발된 5kW급 연료전지시스템이 적용되어지기를 기대한다. 본 연구에서는 국내 제작된 5kW급 고분자전해질 연료전지시스템의 보급이전에 안전성능 평가를 통해 시스템의 성능 및 안전성 평가결과를 제조사에 피드백 하여 5kW급 건물용 연료전지시스템의 조기 상업화에 앞장서고자 한다. 5kW급 연료전지시스템의 기술개발은 핵심부품인 연료변환기, 스택 및 BOP 기술의 경우 1kW급 연료전지시스템에 적용된 것과는 다른 기술이 필요하고, 단순한 scale-up 과정이 아닌 새로운 기술개발로 제품에 적용시켜야 하는 난점을 가지고 있다. 특히, 연료변환기의 경우 연료 유량의 증가로 인하여 reformer, CO shift 및 Prox 반응기의 유체역학, 열교환 흐름 및 촉매반응 공학적으로 이론을 응용한 새로운 반응기 설계와 제작기술 확립이 선행되어 전체적인 시스템 제작 설계에 반영되어져야 한다. 그러므로 본 연구에서는 연료전지시스템 안전성능 평가를 위해 용량증대에 따른 안전성평가 항목을 검토하고, 5kW급 연료전지시스템평가를 수행하여 시스템의 제품성능, 작동성능 및 계통연계성능에서의 안전성을 확인하였고, 정전 유풍과 같은 이상조건 및 실외 환경에 대한 시스템의 안전성도 확인하였다. 또한 부하운전 조건을 75% 및 50%로 변화시켰을 때 빠른 응답시간과 안정적인 부하변동운전을 확인하였다.

  • PDF

CO Tolerance Improvement of MEA Using Metal Thin Film by Sputtering Method in PEM Fuel Cell (스퍼터링 공정으로 제조된 금속박막을 이용한 고분자전해질 연료전지 막-전극접합체의 일산화탄소에 대한 내구성 연구)

  • Cho, Yong-Hun;Yoo, Sung-Jong;Cho, Yoon-Hwan;Park, Hyun-Seo;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • When reformer for fuel cell is used, CO in hydrogen gas leads to a seriously decreased membrane electrode assembly (MEA) performance by catalyst poisoning. The effect of CO on performance of modified MEA by sputtering method is studied in this paper. The experimental results show that sputtered Pt and Ru thin film improve a single cell performance of MEA and sputtered metal thin film has a CO tolerance. The air injection process on anode show improved CO tolerance test result. Moreover, Pt, Ru and PtRu thin film by sputtering had influence on the CO tolerance with air injection process.

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

Effect of the Molar H2O/ and the Molar O2/C Ratio on Long-Term Performance of Diesel Autothermal Reformer for Solid Oxide Fuel Cell (고체산화물 연료전지용 디젤 자열개질기의 장기성능에 미치는 H2O/C와 O2/C 몰 비의 영향)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.110-115
    • /
    • 2007
  • Solid oxide fuel cell(SOFC) has high fuel flexibility due to its high operating temperatures. Hydrocarbonaceous fuels such as diesel has several advantages such as high energy density and established infrastructure for fuel cell applications. However diesel reforming has technical problems like coke formation in a reactor, which results in catastrophic failure of whole system. Performance degradation of diesel autothermal reforming (ATR) leads to increase of undesirable hydrocarbons at reformed gases and subsequently degrades SOFC performance. In this study, we investigate the degradation of SOFC performance(OCV, open circuit voltage) under hydrocarbon(n-Butane) feeds and characteristics of diesel performing under various ratios of reactants($H_2O/C,\;O_2/C$ molar ratios) for improvement of SOFC performance. Especially we achieved relatively high performance of diesel ATR under $H_2O/C=0.8,\;O_2/C=3$ condition.

Stability of Metal-supported SOFC using Diesel Reformate (디젤 개질 가스로 운전되는 금속지지체형 고체산화물 연료전지의 운전 안정성에 관한 연구)

  • Jeong, Jihoon;Baek, Seung-Wook;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.78.1-78.1
    • /
    • 2010
  • The metal-supported solid oxide fuel cell (SOFC) was studied. Hydrocarbon fueled operation is necessary to make SOFC system. Different operating characteristics for metal-supported SOFC are used than for conventional ones as hydrocarbon fueled operation. Metal-supported SOFC was successfully fabricated by a high temperature sinter-joining method and the cathode was in-situ sintered. Synthetic gas, which is compounded as the diesel reformate gas composition and low hydrocarbons was completely removed by the diesel reformer. Metal-supported SOFC with synthetic gas was operated and evaluated and its characteristics analyzed. Button cell and $5{\times}5cm^2$ single stack were mainly operated and analyzed. Long-term operation using diesel reformate shows degradation, and degradation analysis was completed in the view of metal oxidation. Solution to increase stability of long-term operation was tried in the way of materials and operating conditions. Finally, $5{\times}5cm^2$ metal-supported single stack using synthetic gas was operated for 1000 hours under the modified condition.

  • PDF