• Title/Summary/Keyword: Fuel Reformer

Search Result 189, Processing Time 0.022 seconds

A simulation study on operation strategy of residential fuel cell system for cost curtailment (운전비용 절감을 위한 가정용 연료전지 시스템의 운전전략 수립)

  • Hwang, Su-Young;Kim, Min-Jin;Lee, Jin-Ho;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.55-58
    • /
    • 2008
  • Residential fuel cell cogeneration systems have gained much interest due to its high efficiency. In this study, we have performed numerical simulation of residential fuel cell cogeneration system which includes a fuel cell/grid hybrid system. The cogeneration system consists of 1kW PEFC, cooling system, inverter/converter and reformer. Several empirical models have been employed for respective components to improve the accuracy of the simulations. The load varies seasonally. The present simulations can successfully predict the characteristics of the hybrid cogeneration system and thus it can be utilized for establishing an optimal operating strategy of the system.

  • PDF

A Study on the Design, Fabrication and Characteristcs of the 5.9kW PAFC Power Generation System (5.9kW 인산형 연료전지 발전시스템의 설계, 구성 및 특성 연구)

  • 이선근;신동렬;정두환;이원용;임희천;이창우;최수현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.569-579
    • /
    • 1994
  • A 5.9kW phosphoric acid fuel cell(PAFC) power generation system that consists of a reformer, a stack, heat exchangers, an automatic data acquisition and control system was designed, fabricated and analyzed. This system which was firstly fabricated in Korea has been operated for 140 hours with an electricity generation of 684kWh. The PAFC generate electricity in the range of 38-52V and 50-160A and has a typical I-V characteristics of a fuel cell. Using the reformed fuel, the system performance is decreased in some degree due to CO content, compared to using the simulated fuel. At steady state operation condition, the total efficency of this system was 45.2%.

A simulation study on residential fuel cell system for cost curtailment (가정용 연료전지 시스템 대상 시뮬레이션 기반 비용절감 기법 연구)

  • Hwang, Su-Young;Kim, Min-Jin;Lee, Jin-Ho;Lee, Won-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3148-3153
    • /
    • 2008
  • Residential fuel cell cogeneration systems have gained much interest due to its high efficiency. In this study, we have performed numerical simulation of residential fuel cell cogeneration system which includes a fuel cell/grid hybrid system. The cogeneration system consists of 1kW PEFC, cooling system, inverter/converter and reformer. Several empirical models have been employed for respective components to improve the accuracy of the simulations. The load varies seasonally. The present simulations can successfully predict the characteristics of the hybrid cogeneration system and thus it can be utilized for establishing an optimal operating strategy of the system.

  • PDF

A Study on the Submarine Air Independent Propulsion System: Focused on Submarines Currently in Operation (잠수함 공기불요 추진체계에 대한 연구: 현재 운용 중인 잠수함을 중심으로)

  • Jang, Junseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.418-425
    • /
    • 2021
  • Submarines are weapons systems that have been proven to be useful in battle since World War I and have continued to improve the efficiency of propulsion systems in order to be used efficiently on the battlefield. In particular, countries that unable to utilize nuclear propulsion systems make efforts to increase the efficiency of Air Independent Propulsion systems, and typical examples are fuel cells, Stirling engines and MESMA. It is also expected that the development of new propulsion systems such as hydrogen-reformer fuel cells, metal-air fuel cell and direct combustion propulsion systems will continue, so the characteristics of these will be examined and the performance based on the published data be checked in this thesis.

Preliminary study and development of $kW_e$-class liquid fuel based SOFC system (액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발)

  • Yoon, Sang-Ho;Kim, Sun-Young;Bae, Joong-Myeon;Baek, Seung-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF

kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System (고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications (Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용)

  • Moon, Dong Ju;Ryu, Jong-Woo;Yoo, Kye Sang;Lee, Byung Gwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

Operation Results of a 5kW-Class SOFC System Composed of 2 Sub-Module Stacks (2 모듈 스택을 이용한 5kW급 SOFC 시스템 운전결과)

  • Lee, Tae-Hee;Choi, Mi-Hwa;Yoo, Young-Sung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.609-615
    • /
    • 2011
  • A 5 kW class SOFC system for cogeneration power units was consisted of a hot box part and cold BOPs. High temperature components such as a stack, a fuel reformer, a catalytic combustor, and heat exchanges are arranged in the bot box considering their operating temperatures for the system efficiency. The hot box was made of ceramic boards for the thermal insulation. A 5 kW class SOFC stack was composed of 2 sub-modules and each module had 64 cells with $15{\times}15cm^2$ area and stainless steel interconnects. The 5 kW class SOFC system was operated with a hydrogen and a city gas. With a hydrogen, the total power of the stacks was about 7.1 kWDC and electrical efficiency was about 49.3% at 80 A. With a city gas, the total power of the stacks was about 5.7 $kW_{DC}$ and electrical efficiency was about 38.8% at 60 A. Under self-sustained operating condition, the system efficiency including a power conditioning loss and a consumed power by BOPs was about 30.2%.

Development of A Simulation Environment for An Efficient Combined Control Methodology of Fuel Cell Hybrid Electric Vehicles (연료전지 자동차 시스템의 효율적인 연계운전방법 개발을 위한 시뮬레이션 환경 구축)

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Kim, Do-Hyun;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2367-2369
    • /
    • 2004
  • It is well known that an indirect methanol based fuel cell system imposes a performance limitation on the fuel cell electric vehicle (FCEV) due to the reformer lag. An optional battery system can be used together with fuel cell to improve this performance limitation and it is called a fuel cell hybrid electric vehicle (FCHEV) this paper first describes the configuration of FCHEV with explanation of the energy flow between subsystems. Mathematical modeling of each subsystem such as a fuel cell system, a battery system, a driving motor with the transmission are formulated and coded using Matlab/simulink software. It is illustrated by simulation results that fuel cell modeling yields appropriate stack voltage in order to get the required current quantity with varying hydrogen flow.

  • PDF

Development of Tubular Solid Oxide Fuel Cell (원통형 고체산화물 연료전지 기술개발)

  • Song, Rak-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.373-380
    • /
    • 2001
  • Solid Oxide Fuel Cells (SOFCs) have received considerable attention because of the advantages of high effiiciency, low pollution, cogeneration application and excellent integration with simplified reformer In this paper, we reported development of anode-tubular SOFC by wet process. For making tubular cell, Ni-cermet YSZ anode tube was fabricated using extrusion process, and YSZ electrolyte layer and LSM-YSZ composite, LSM, LSCF cathode layer were coated onto the anode supported tube using slurry dipping process and sintered by co-firing process. By using this tubular cell, we fabricated single cell consisted of the various cathode layers and 4 cell stack with an effective area of $75 cm^2$ per single cell, and evaluated their performance characteristics.

  • PDF