• Title/Summary/Keyword: Fuel Property

Search Result 378, Processing Time 0.023 seconds

A Numerical Study of Combustion Characteristics of Hydrocarbon Fuel Droplet (탄화수소 연료 액적의 연소 특성에 관한 수치해석)

  • Lee, Bong-Su;Lee, Kyung-Jae;Kim, Jong-Hyun;Koo, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1595-1603
    • /
    • 2003
  • Droplet combustion at high ambient pressures is studied numerically by formulating one dimensional combustion model in the mixture of n-heptane fuel and air. The ambient pressure is supercritical conditions. The modified Soave-Redlich-Kwong state equation is used in the evaluation of thermophysical properties to account for the real gas effect on fluid p-v-T properties in high pressure conditions. Non-ideal thermodynamic and transport property at near critical and supercritical conditions are also considered. Several parametric studies are performed by changing ambient pressure and initial droplet diameter. Droplet lifetime decreased with increasing pressure. Surface temperature increased with increasing pressure. Ignition time increased with increasing initial droplet diameter. Temporal or spatial distribution of mass fraction, mass diffusivity, Lewis number, thermal conductivity, and specific heat were presented.

An Effect of Fuel Property on the Spray characteristics of Swirl Injector for Use HCCI engine (연료 물성치 변화가 HCCI용 스월 인젝터의 분무특성에 미치는 영향)

  • Jeong, Hae-Young;Lee, Ki-Hyung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.478-483
    • /
    • 2003
  • This paper describes spray characteristics of a swirl injector which is intended for use in a HCCI engine. Many optical diagnostics such as laser diffraction methods, and high speed camera photography are applied to measure the spray drop diameter and to investigate the spray development process. The effect of fuel properties on the spray characteristics was investigated using three different fuels because HCCI combustion is tolerant of the chemical composition of various fuels. From these results, the HCCI injector formed a hollow cone sheet spray rather than a liquid jet and the atomization efficiency is high for the low-pressure injector. The SMD of test injector was ranged from $15{\mu}m$ ${\mu}m$ We also found that the spray breakup characteristics were dependent on the fuel properties such as density, viscosity, and surface tension.

  • PDF

Correlations for Predicting Viscosity of Vegetable Oils and Its Derivatives for Compression Ignition Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.122-130
    • /
    • 2009
  • Vegetable oil and its derivatives as an alternative diesel fuel have become more attractive recently because of its environmental benefits and the fact that they are made from renewable resources. Viscosity is the most significant property to affect the utilization of vegetable oil and its derivatives in the compression ignition engines. This paper presents the existing correlations for predicting the viscosity of vegetable oil and its derivatives for compression ignition engines. According to the parameter considered in the correlations, the empirical correlations can be divided into six groups: correlations as a function of temperature, of proportion, of composition, of temperature and composition, of temperature and proportion, and of fuel properties. Out of physical properties of fuel, there exist in the literature several parameters for giving the influence on kinematic viscosity such as density, specific gravity, the ratio of iodine value over the saponification value, higher heating value, flash point and pressure. The study for the verification of applicability of existing correlations to non-edible vegetable oil and its derivatives is required.

  • PDF

Synthesis and Characterization of H3PO4 Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells

  • Lee, Hye-Jin;Lee, Dong-Hoon;Henkensmeier, Dirk;Jang, Jong-Hyun;Cho, Eun-Ae;Kim, Hyoung-Juhn;Kim, Hwa-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3279-3284
    • /
    • 2012
  • Poly(benzimidazole-co-benzoxazole)s (PBI-co-PBO) are synthesized by polycondensation reaction with 3,3'-diaminobenzidine, terephthalic acid and 3,3'-dihydroxybenzidine or 4,6-diaminoresorcinol in polyphosphoric acid (PPA). All polymer membranes are prepared by the direct casting method (in-situ fabrication). The introduction of benzoxazole units (BO units) into a polymer backbone lowers the basic property and $H_3PO_4$ doping level of the copolymer membranes, resulting in the improvement of mechanical strength. The proton conductivity of $H_3PO_4$ doped PBI-co-PBO membranes decrease as a result of adding amounts of BO units. The maximum tensile strength reaches 4.1 MPa with a 10% molar ratio of BO units in the copolymer. As a result, the $H_3PO_4$ doped PBI-co-PBO membranes could be utilized as alternative proton exchange membranes in high temperature polymer electrolyte fuel cells.

Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses

  • Setyawan, Daru;Yoo, Jiho;Kim, Sangdo;Choi, Hokyung;Rhim, Youngjoon;Lim, Jeonghwan;Lee, Sihyun;Chun, Dong Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.547-554
    • /
    • 2018
  • Torrefaction is the promising process of pretreating biomass materials to increase the quality of their energy, especially to upgrade the materials' grindability so that it is suitable for a commercial pulverizer machine. In this study, torrefaction of oak, bamboo, oil palm trunk, and rice husk was carried out under different torrefaction temperatures ($300^{\circ}C$, $330^{\circ}C$, and $350^{\circ}C$) and different torrefaction residence times (30, 45, and 60 minutes). Complete characterization of the torrefied biomass, including proximate analysis, calorific value, thermogravimetric analysis, mass yield, energy yield, and grindability properties (Hardgrove Grindability Index) was carried out. Increasing the torrefaction temperature and residence time significantly improved the calorific value, energy density (by reducing the product mass), and grindability of the product. Furthermore, for commercial purposes, the torrefaction conditions that produced the desired grindability properties of the torrefied product were $330^{\circ}C-30minutes$ and $300^{\circ}-45minutes$, and the latter condition produced a higher energy yield for bamboo, oil palm trunk, and rice husk; however, torrefaction of oak did not achieve the targeted grindability property values.

The Study on Effect of Emissions and Performance of a Conventional Vehicle using the High Concentration Alcohol Blended Petroleum Product (고농도 알코올 혼합 석유제품이 자동차 성능 및 배출가스에 미치는 영향 연구)

  • KIM, SUNG-WOO;DOE, JIN-WOO;KIM, KI-HO;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • As concern about energy security and global warming many countries have been making effort to reduce fossil fuel. In the case of US, as one of the efforts, the standards of the alcohol vehicle fuels(including blended with gasoline) have been established. Alcohol is known that make some trouble concerning startability, durability and corrosion when using as fuel of a conventional vehicle. For these reason, alcohol usage needs not only the fuel standard, but also a modified car. In the case of Korea, although there are no the standard and the modified vehicle yet, high concentration alcohol blended fuel has being sold at illegal market. In this study, exhaust gas and performance of the conventional vehicle that alcohol(methanol and isopropyl alcohol) blends were fueled were measured to notify danger of using them without preparation of institutional arrangements. Also, to analyze correlation characteristics of the fuels and them, property test of the fuels was conducted. The test result show that bad-startability caused by low RVP and high T10 affected increase in NMOG and CO. NOx was increased under the highest short term fuel trim caused by high Oxygen content and low NHV of alcohol. According to increasing as alcohol content, fuel economy and acceleration ability were decreased but $CO_2$ was not significantly decreased.

A Study on the Variation of Physical & chemical Properties with Refining treatment and Additive mixture for Marine Fuel Oil (선박연료유의 정제처리 및 첨가제 혼합에 따른 물리.화학적 특성 변화에 관한 연구)

  • Han, Won-Hui;Nam, Jeong-Gil;Lee, Don-Chool;Park, Jeong-Dae;Kang, Dae-Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.291-297
    • /
    • 2006
  • Recently it is a tendency that the use of the heavy fuel oil is investigated even from the middle&small class vessel in order to reduce the operating cost of vessel caused by with rise of international gas price. In this study, analyzed the physical & chemical properties and examined the effect of refining treatment and a fuel oil additive for MF30 fuel oil which is a mixture fuel oil mixed M.G.O and the heavy oil MF380 use to be possible in the middle&small class vessel. As a results, the effects of two of pre-refinery treatment methods as centrifugal purifier and heating & homogenizing system(M.C.H) are some feeble, but the pour point and the flash point came to be low more or less. The effect of property improvement which is caused by with the fuel oil additive did not appear positively.

  • PDF

Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell (연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jung-Taek;Kim, Jun-Bom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF

A Study on the Variation of Physical & Chemical Properties with Refining Treatment and Additive Mixture for Marine Fuel Oil (선박연료유의 정제처리 및 첨가제 혼합에 따른 물리.화학적 특성 변화에 관한 연구)

  • Han, Won-Hui;Nam, Jeong-Gil;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.39-45
    • /
    • 2007
  • Recently it is a tendency that the heavy fuel oil is considered to be used on board even middle or small sized vessels in order to reduce the operating cost of vessel mused by a rise in international oil prices. In this study, analyzed the physical & chemical properties and examined the effect of refining treatment and a fuel oil additive for MF30 fuel oil which is a mixture fuel oil mixed M.G.O and the heavy oil MF380 use to be possible in the middle&small class vessel. As a results, the effects of two of pre-refinery treatment methods as centrifugal purifier and heating & homogenizing system(M.C.H) are some feeble, but the pour point and the flash point came to be low more or less. The effect of property improvement which is mused by the fuel oil additive did not appear positively.

  • PDF

An Experimental Study on the Characteristics of Electrochemical Reactions of RDF/RPF in the Direct Carbon Fuel Cell (직접탄소 연료전지에서 RDF 및 RPF의 전기화학반응 특성에 관한 실험적 연구)

  • Ahn, Seong Yool;Rhie, Young Hoon;Eom, Seong Yong;Sung, Yeon Mo;Moon, Cheor Eon;Kang, Ki Joong;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.513-520
    • /
    • 2012
  • The electrochemical reaction of refuse derived fuel (RDF) and refuse plastic/paper fuel (RPF) was investigated in the direct carbon fuel cell (DCFC) system. The open circuit voltage (OCV) of RPF was higher than RDF and other coals because of its thermal reactive characteristic under carbon dioxide. The thermal reactivity of fuels was investigated by thermogravimetric analysis method. and the reaction rate of RPF was higher than other fuels. The behavior of all sample's potential was analogous in the beginning region of electrochemical reactions due to similar functional groups on the surface of fuels analyzed by X-ray Photoelectron Spectroscopy experiments. The potential level of RDF and RPF decreased rapidly comparing to coals in the next of the electrochemical reaction because the surface area and pore volume investigated by nitrogen gas adsorption tests were smaller than coals. This characteristic signifies the contact surface between electrolyte and fuel is restricted. The potential of fuels was maintained to the high current density region over 40 $mA/cm^2$ by total carbon component. The maximum power density of RDF and RPF reached up to 45~70% comparing to coal. The obvious improvement of maximum power density by increasing operating temperature was observed in both refuse fuels.