• Title/Summary/Keyword: Fuel Permeation

Search Result 51, Processing Time 0.038 seconds

A Study on Contamination of Hydrogen Permeable Pd- based Membranes (Pd 계열 수소 분리막의 오염에 관한 연구)

  • Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Lim, Tae-Hoon;Hong, Seong-Ahn;Kim, Jinsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • $H_2$ permeation flux though a $100{\mu}m-thick$ Pd-Ru (6wt%) membrane was measured at various temperatures and pressures. The permeation flux followed the Sievert's law and thus the rate-limiting step of the hydrogen permeation was the bulk atomic diffusion step. The activation energy of the permeation flux was obtained at 17.9 kJ/mol and this value is consistent with those published previously. While no degradation of the permeation flux wasfound in the membrane exposed to the $O_2$ and $CO_2$ environments for 100 hours, the membrane exposed to $N_2$ environment for 100 hours showed the degradation in the $H_2$ permeation flux. The $H_2$ permeation was decreased as the exposure temperature to $N_2$, environment was increased. The $H_2$ permeation flux was fully recovered after the membrane was kept in the $H_2$ environment for certain time. The permeation flux degradation might be caused by the formation of metal nitride on the membrane surface.

Hydrogen-Permselective TiO$_2$2/SiO$_2$2 Membranes Formed by Chemical Vapor Deposition

  • Nam, Suk-Woo;Ha, Heung-Yong;Yoon, Sung-Pil;Jonghee Han;Lim, Tae-Hoon;Oh, In-Hwan;Seong- Ahn Hong
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 2001
  • Films of TiO$_2$/SiO$_2$ were deposited on the inner surface of the porous glass support tubes by decomposition of tetraisopropyl titanate (TIPT) and tetraethyl orthosilicate (TEOS) at atmospheric pressure. Dense and hydrogen -permselective membranes were formed at 400-600$\^{C}$. The permeation rates of H$_2$ through the membrane at 600$\^{C}$ were 0.2-0.4 ㎤(STP)/min-㎠ atm and H$_2$:N$_2$permeation ratios were above 1000. The permeation properties of the membranes were investigated at various deposition temperatures and TIPT/TEOS concentrations. Decomposition of TIPT alone at temperatures above 400$\^{C}$ produced porous crystalline TiO$_2$ films and they were not H7-selective. Decomposition of TEOS produced H$_2$-permeable SiO$_2$ films at 400-600$\^{C}$ but film deposition rate was very low. Addition of TIFT to the TEOS stream significantly accelerated the deposition rate and produced highly H$_2$-selective films. Increasing the TIPT/TEOS concentration ratio increased the deposition rate. The TiO$_2$/SiO$_2$ membranes formed at 600 $\^{C}$ have the permeation properties comparable to those of SiO$_2$ membranes produced from TEOS.

  • PDF

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Gas Permeation Study of Fuel Hose Composed as Inner Material of FKM Rubber (FKM 고무를 내층재료로 한 연료호스의 가스 투과성 연구)

  • Kim, Do-Hyun;Doh, Kyung-Hwan;Park, Hyun-Ho;Lee, Chang-Seop
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • To develop an automotive fuel hose suitable to the international environmental regulation, FKM rubber materials as an inner material of fuel hole were prepared with different chemical compositions. Measurement of the properties of thermal resistance, oil resistance, fuel resistance, gas permeability including fundamental properties were performed to investigate compatibility for a fuel hose material. Fundamental properties, thermal resistance, oil resistance, fuel resistance and permeability of FKM rubber materials were improved with fluorine content. When the carbon content was 20 phr, FKM compounds with fluorine contents of 66%, 09% and 71% were shown to satisfy the specification oi fuel hose. The gas permeability of NBR and FKM compounds was measured on the mixed fuel oils prepared with isooctane-toluene and gasoline-methanol. FKM rubber materials showed a small difference in penetrated amount of fuel and showed a permeability superior to NBR material. he permeability of FKM rubber materials was not influenced by the contents of fuel oil. Thermal properties of 69% FKM rubber experienced by permeability testing were not variated.

Hydrogen Separation by Compact-type Silica Membrane Process (컴팩트 타입 실리카막 공정을 이용한 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Lee, Sang-Jin;Chung, Jong-Tae;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF

Synthesis of Poly(2,6-dimethyl-1,4-phenylene oxide) containing Poly(styrene sulfonic acid) for Fuel Cell (연료전지용 Poly(styrene sulfonic acid)를 갖는 Poly(2,6-dimethyl-1,4-phenylene oxid)의 합성)

  • An, Sung-Guk;Cho, Chang-Gi
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.34-37
    • /
    • 2003
  • The development and improvement of advanced fuel cell systems is a major topic of current research, since fuel cells are considerably more efficient than other energy converters$^1$. In proton exchange membrane fuel cell and direct methanol fuel cell the polymer membrane represents a key component. The membrane materials fulfill complex requirements. It has to combine electrochemical stability, workability, high ionic conductivity, low permeation of the reactants (methanol etc.) (omitted)

  • PDF

Hydrogen Permeation Properties of $(Ni_{60}-Nb_{40})_{95}-Pd_5$ Amorphous Metallic Membrane ($(Ni_{60}-Nb_{40})_{95}-Pd_5$ 비정질 금속막의 수소투과 특성)

  • Lee, Dock-Young;Kim, Yoon-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.359-366
    • /
    • 2008
  • Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In this processes for hydrogen production from fossil fuels, separation and purification is a critical technology. $(Ni_{60}-Nb_{40})_{95}-Pd_5$ alloy ingots were prepared by arc-melting the mixture of pure metals in an Ar atmosphere. Melt-spun ribbons were produced by the single-roller melt-spinning technique in an Ar atmosphere. Amorphous structure and thermal behavior were characterized by XRD and DSC. The permeability of the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy membrane was characterized by hydrogen permeation experiments in the temperature range 623 to 773 K and pressure of 2 bars. The maximum hydrogen permeability was $3.54{\times}10^{-9}[mol{\cdot}m^{-1}s^{-1}{\cdot}pa^{-1/2}]$ at 773 K for the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy.

Synthesis and Characterization of Fluorinated Polybenzimidazole Proton Exchange Membranes for Fuel Cell (연료전지용 불소화 폴리벤즈이미다졸 양성자 교환 멤브레인 합성 및 특성평가)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • A fluorinated polybenzimidazole (FPBI) was synthesized from 3,3-diaminobenzidine (DAB) of tetraamine, 2,2-bis(4-carboxyphenyl)hexafluoropropane of aromatic biscarboxylic acid, and 4,4-sulfonyldibenzoic acid of aromatic biscarboxylic acid in polyphosphoric acid (PPA). A FPBI was easily cast and made into clear films. The structure of condensation polymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (fourier transform infrared). TGA (thermogravimetric analysis) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. The proton conductivity of the FPBI membranes increased with increasing temperatures in the polymer. A FPBI membrane has a maximum ion conductivity of 45 mS/cm at $90^{\circ}C$ and 100% relative humidity.

Quantification of Methanol Concentration in the Polymer Electrolyte Membrane of Direct Methanol Fuel Cell by Solid-state NMR

  • Kim, Seong-Soo;Paik, Youn-Kee;Kim, Sun-Ha;Han, Oc-Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.96-102
    • /
    • 2008
  • Direct quantification of methanol in polymer electrolyte membrane (PEM) by solid-state nuclear magnetic resonance (NMR) spectroscopy was studied and the methanol concentrations in PEM produced by crossover and diffusion were compared. The error range of the quantification was not smaller than ${\pm}15%$ and the amount of the methanol crossed over in our direct methanol fuel cells (DMFCs) was less than the methanol diffused to PEM. The methanol concentration in the PEM of the DMFC operated at different current densities were equivalent.