• Title/Summary/Keyword: Fuel Oil Price

검색결과 116건 처리시간 0.025초

폐식용유와 디젤유 블렌딩을 통한 요오드가 및 점도 특성 (Characteristics of Iodine Values and Viscosities by blending of Waste Vegetable Oil and Diesel Oil)

  • 정동석;남병욱;정용주
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1648-1653
    • /
    • 2009
  • 석유와 같은 화석연료는 $CO_2$의 방출로 인해 지구 온난화의 원인이 되고, 그 매장량 또한 한정되어 있다. 따라서 대체에너지에 관한 관심이 증대 되고 있고 이러한 대체 에너지 중 식물성 오일은 환경 친화적이며 재생산이 가능한 에너지원으로 기존의 고효율의 디젤유와 유사한 특성을 가지고 있다. 또한 식물성 오일은 $CO_2$방출에 의한 지구 온난화 문제를 줄일 수 있는 방법중의 하나로도 잘 알려져 있다. 본 연구에서는 곡물가격 상승과 식량자원 부족문제를 해결하기 위하여 폐식용유를 사용하였다. $15{\mu}m$구멍 입경을 갖는 시브를 사용하여 폐식용유(WVO)로부터 불순물과 침전물을 제거 한 후 Homo-mixer를 사용하여 5000rpm에서 10분간 디젤유와 혼합하였다. WVO와 디젤 블렌딩 용액의 요오드가(Iodine Value)와 점도 변화를 조사한 후 최종적으로 디젤 엔진에 적용결과 엔진구동에 가능성이 있음을 확인 하였다.

마이크로웨이브 플라즈마를 이용한 석탄가스화 특성 연구 (The Characteristics of Coal Gasification using Microwave Plasma)

  • 김두일;이재구;김용구;윤상준
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.93-99
    • /
    • 2012
  • The investigation of clean and environment-friendly coal utilization technology is actively progressed due to high oil price and serious climate change caused by greenhouse gas emissions. In this study, the plasma gasification was performed using a 6kW microwave plasma unit under various reaction conditions: the particle sizes of coal ($45{\mu}m-150{\mu}m$), $O_2$/fuel ratio (0 - 1.3), and steam/fuel ratio (0 - 1.5). The $H_2$ composition decreases with decreasing coal particle size. With increasing $O_2$/fuel ratio, the $H_2$ composition in the syngas decreased while the $CO_2$ composition increased. As the steam/fuel ratio increased from 0 to 1.5, the $H_2$ composition in the syngas increased while the $CO_2$ composition decreased. From the results, it was proven that the variation of syngas composition greatly affected by $O_2$/fuel ratio than steam/fuel ratio. The $H_2$ composition in the syngas, carbon conversion, and cold gas efficiency increased with increasing plasma power.

산림 사업지 바이오매스를 이용한 화석연료 대체효과 (Substitution Effect of Fossil Fuel using Biomass produced by Forest Treatment)

  • 손영모;이경학;서정호;권순덕
    • 한국산림과학회지
    • /
    • 제96권6호
    • /
    • pp.639-643
    • /
    • 2007
  • 숲가꾸기 사업에 의해 산출되는 바이오매스 자원과 상업적 벌채지에서의 미이용 잔존 임목 바이오매스 등의 이용은 신고유가 시대에 바이오에너지원으로 각광받을 수 있을 것이다. 이점에 착안하여 이들 사업지에서의 바이오매스 자원량 계산 및 화석연료와의 대체 가능성에 대하여 구명해 보았다. 2005년 연간 숲가꾸기 사업지 면적은 294,115 ha이며, 이중 수집되는 물량은 $143,747m^3$, 이를 바이오매스 및 발열량으로 전환하면, 115천톤, 533, 199 Gcal이다. 그러나 숲가꾸기 후 임내에 잔존하는 가지, 잎, 초두부 등 잠재공급가능한 물량은 2,483천톤이며, 등유 환산가는 약 11,133억원에 이른다. 이는 숲가꾸기에 의해 실제 수집되는 산물의 약 20배에 달하는 화석연료 대체효과를 갖는 양이다. 그리고 용재로서 임목을 이용하기 위한 상업적 벌채지의 미 이용 잔존 바이오매스량은 475천톤, 발열량으로 전환시키면 2,206,235 Gcal이 되며, 실내등유가로 환산하면, 2,211억원으로, 이 역시 화석연료를 대체할 수 있는 에너지원이 된다. 친환경적이며 재생가능한 자원으로서 임목 바이오매스의 화석연료 대체효과에 관심을 가질 시점이다.

알루미늄 기반 Advanced Multi-Material 기술의 선진 동향 (Trends of Advanced Multi-Material Technology for Light Materials based on Aluminum)

  • 이목영;정성훈
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.19-25
    • /
    • 2016
  • Global warming is hot issue to keep the earth everlastingly. Despite the increase of the world population and the energy demand, the world oil supply and the oil price are hold the steady state. If we are not decrease the world population and the energy consumption, unforeseeable energy crisis will come in the immediate future. AMT acronym of Advanced Materials for Transportation is a non-profitable IEA-affiliated organization to mitigate the oil consumption and the environment contamination for the transportation. In recent, Annex X Multi-materials Joining was added to enhance the car body weight reduction cause the high fuel efficiency and the low emission of exhaust gas. Multi-materials are the advanced materials application technology to optimize the weight, the performance and the cost with the combination of different materials such as Al-alloy, Mg- alloy, AHSS and CFRP. In this study, the trends of AMT strategy and Al-alloy based multi-materials joining technology were review. Also several technologies for Al-alloy dissimilar joining were investigated.

최적박용기관의 선정 및 그의 경제성 평가방법에 관한 연구 (A study on the selection of optimal marine engine and its techno- economical evaluation method)

  • 전효중;조기열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.51-66
    • /
    • 1984
  • The cost percentage of engine part in the total building cost of a ship is about 30-40% and the main engine occupies about 50% of the engine part cost. For certain ships the fuel bill can be as high as about 60-70% of the total operating cost after two oil shocks and its amount for one year is nearly equivalent to her main engine price. This fact has further increased the pressure on the engine builders to develop engines of higher efficiency and better possibilities to burn further deteriorated fuel qualities. But the energy-saving plants are ordinarily more expensive and their available amount of exhaust gas energy is less and therefore, they are not always profitable and optimum systems. This paper is prepared to decide the most economical and efficient engine systems by presenting reasonable selecting and economical evaluation methods of the main engine, which is the largest single unit and the most expensive, and its auxiliaries. In order to demonstrate the application of investigated methods in a practical case, a 46, 000 DWT class bulk carrier is selected as a model ship and her main engine and its auxiliaries are selected and evaluated. The result shows that the optimum determined has one year three months POP, 0.903 IRR at a year, 4, 116, 000 dollars PW in 15 years (for 5% escalation rate of fuel cost) and 9.522 BCR for same condition, when the engine plant of a same existing ship is taken as the basis.

  • PDF

선박용 연료절감장치 Pre-Swirl Duct의 설계 및 평가방법 연구 (Pre-Swirl Duct of Fuel Oil Saving Device Design and Analysis for Ship)

  • 신현준;이강훈;한명륜;이창열;신성철
    • 대한조선학회논문집
    • /
    • 제50권3호
    • /
    • pp.145-152
    • /
    • 2013
  • Recently, with oil price jumping and environmental issues, Green ship is paid deep attention to by ship owner, operator, builder, class and government. Fuel efficiency and reduction of $CO_2$ emissions are expected to have a strong influence on the design and operation of merchant ships. Many ship owners and operators are seeking the more economic method by the best operating route and the application of reliable and effective energy saving devices. With the Energy Efficiency Design Index (EEDI) in 2013 attention will more than ever be focused at achieving maximum fuel economy in the hydrodynamic design of hull forms, their appendages and propellers. IMO requirements for $CO_2$ emission for ships will now be implemented for vessels ordered from 1st January 2013. So far, a lot of new idea and patents have been proposed, tested, claimed and applied for various kinds of ship type. This paper shows numerical and experimental work related to a study on a energy saving devices particularly for fuller ship such as merchant vessel of Tanker and Bulker. From the bare hull wake measurements, typical upper/lower asymmetry of hull wake at the propeller disk was found. The pre-swirl duct have been designed and reviewed to recover the loss of propeller running in that condition. The general function of the pre-swirl duct was set to work against this asymmetry of wake and generate pre-swirled flow into the propeller against the propeller rotating direction.

바이오원유-에탄올/파일럿 디젤유 이종연료 혼소를 통한 디젤엔진의 연소 및 배출가스 특성에 관한 연구 (A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Pyrolysis Oil-Ethanol and Pilot Diesel)

  • 김민재;이석환;조정권;윤준규;임종한
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.420-427
    • /
    • 2017
  • 최근 화석연료의 고갈, 지구온난화 그리고 환경오염이 세계적인 공공의 문제로 대두됨으로써 신재생에너지에 관한 연구들이 많이 진행되고 있다. 이러한 신재생에너지들 중 바이오연료는 다루기 쉬울 뿐만 아니라, 낮은 가격과 풍부한 자원성이 미래에 화석연료를 대체할 수 있는 잠재성을 가지고 있다. 바이오연료 중 본 연구에서 사용한 급속 열분해유는 폐목재나 억새, 갈대와 같은 비식용작물에서부터 추출되었고, 이는 무한한 자원성 때문에 디젤엔진에서 디젤유를 대체할 신재생에너지로 주목받고 있다. 하지만 열분해유는 낮은 세탄가, 높은 점도, 높은 산도 그리고 낮은 발열량으로 인해 디젤엔진에 직접적으로 적용하기가 어렵다. 따라서 이러한 낮은 물질적 특성을 개선하기 위해서 본 연구에서는 에탄올과 같은 알코올계 연료와 혼합하여 투입하였다. 알코올계 연료인 에탄올이 열분해유의 저장 및 보관성에도 도움을 줄뿐 아니라 점도를 낮춰주어 엔진에 적용하기 수월하게 만들기 때문이다. 열분해유-에탄올 혼합연료를 파일럿 분사한 디젤유 이후 분사하여 연소시켜 이때의 연소 및 배기특성에 대해 고찰해 보았고, 그 결과로 미연탄화수소와 일산화탄소는 증가하는 경향을 띄지만 NOx와 PM이 현저히 줄어든 결과를 확인할 수 있었다.

병렬형 하이브리드 버스의 시뮬레이션 입력 매개변수 변화에 따른 연비 민감도 분석 (Analysis of Fuel Economy Sensitivity for Parallel Hybrid Bus according to Variation of Simulation Input Parameter)

  • 최종대;정종렬;이대흥;신창우;박영일;임원식;차석원
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.92-99
    • /
    • 2013
  • High oil price and global warming problem are being continued all over the world. For this reason, fuel economy and emission of greenhouse gas are regulated by law in many countries. Therefore many companies are researching and producing hybrid electric vehicles (HEVs) which substitute conventional internal combustion engine vehicle. However, these researches and productions are restricted to mainly passenger cars. Because of cost and physical problems, commercial vehicles are difficult to evaluate fuel economy. So simulations are important and it is necessary to know how sensitive parameters that enter into simulation affect. In this paper, forward simulations using AVL Cruise were conducted for analysis of fuel economy for parallel hybrid bus and were repeated by changing each parameter. Based on these results, root mean square errors (RMSE) are calculated for analysis of fuel economy sensitivity. The number of target parameters are 15. These parameters were classified with high and low sensitivity parameter relatively.

모터 및 배터리 용량에 따른 전기스쿠터 성능해석 (The Analysis of a Electric Scooter's Performance through Motor and Battery Capacity Changing)

  • 길범수;김강출
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.7-13
    • /
    • 2011
  • The climate change due to the increased consumption with fossil fuel and rise of the oil price have been serious global issues. Automobile industry consumes 30% of the oil every year and causes air pollution and global warming by the exhaust emissions and carbon dioxide ($CO_2$). The demand of two-wheeled vehicle increases every year due to the parking and traffic problem caused by the increased automobiles in the urban area. Approximately 50,000,000 two-wheeled vehicles were produced in 2008. The development and sales of the hybrid two-wheeled vehicle industry become active due to its increased market demands. In this paper, the change of the motor and battery efficiency, driving distance, hill climbing ability with the change of the motor capacity was analyzed. Simulation of the peculiarities in urban driving schedule(World-wide Motorcycle Test Cycle(WMTC), Manhattan driving schedule), constant speed(10 km/h, 35 km/h) of small electronic two-wheeled vehicle was also carried out. Through the simulation result, appropriate capacities of the motor and battery for urban driving was acquired.

Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship

  • Jang, Jinho;Choi, Soon Ho;Ahn, Sung-Mok;Kim, Booki;Seo, Jong Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.363-379
    • /
    • 2014
  • In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.