• Title/Summary/Keyword: Fuel Oil Price

Search Result 116, Processing Time 0.022 seconds

A Study on Combustion Characteristics of Pulverized Fuel Made from Food Waste (음식물쓰레기로 부터 제조한 분체연료 연소특성)

  • Son, Hyun-Suk;Park, Yung-Sung;Kim, Sang-Guk
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000 Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio (fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combustor temperature reaches about $1000^{\circ}C$ and CO is 77-103 ppm at 1.55 excess air ratio and SOx and Cl are under 2 ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy at the age of high oil price.

  • PDF

Fuel Efficiency and $CO_2$ Emission Characteristics on Driving Cycle Mode and Ignition Advance Condition Change of CNG/LPLI Bi-Fuel Vehicle (CNG/LPLI Bi-Fuel 자동차에서 주행시험 모드와 점화진각에 따른 연비 및 $CO_2$ 배출가스 특성)

  • Cho, Seungwan;Kim, Seonghoon;Kwon, Seokjoo;Park, Sungwook;Jeon, Chunghwan;Seo, Youngho
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • Due to persist of high oil prices, LPG price stabilization and CNG modification project will be conducted. Present study describes the fuel efficiency and $CO_2$ emission characteristics on driving cycle mode and ignition advance condition change of CNG/LPG Bi-Fuel vehicle. In case of LPG Base and CNG Base condition, considerable $CO_2$ emissions are generated within range of high acceleration on FTP-75 and HWFET driving mode. However previous phenomena does not appear in CNG fuel $10^{\circ}CA$ and $15^{\circ}CA$ spark advance condition. As a result of analyzing the experimental data CNG $S/A10^{\circ}CA$, CNG $S/A15^{\circ}CA$, CNG Base, and LPG Base sequentially measured high fuel economy and low $CO_2$ emission characteristics.

A Study on Combustion Characteristics of Purverized Fuel Made from Food Waste (음식물쓰레기로부터 제조한 분체연료 연소특성)

  • Son, Hyun-Suk;Park, Yung-Sung;Yun, Jong-Deuk;Lee, Ho-Nam;Lee, Seung-Hoon;Kim, Sang-Guk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.149-152
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio(fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combueter temperature reaches about $1000^{\circ}C$ and CO is 77-103ppm at 1.55 excess air ratio and SOx and Cl are under 2ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy for high oil price era

  • PDF

Biodiesel Production Technology from Sewage Sludge (하수 슬러지로부터 바이오디젤 생산기술)

  • Kim, Jae-Kon;Park, Jo-Yong;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.688-700
    • /
    • 2013
  • The potential of biodiesel production technology using lipids extracted from sewage sludge was investigated. Despite the bright prospect of biodiesel production, efforts to commercialize it have been very limited. One of the major obstacles has been the high price associated with refined oil feedstock, which makes up nearly 70-75% of the total production costs. Hence, in order to reduce the cost of biodiesel production, using cheaper feedstock such as waste oil or low-quality oil has been proposed. Especially, sewage sludge, a relatively inexpensive feedstock, is a promising raw material for such a purpose. In this study, it is aimed to review biodiesel production technology from sewage sludge as a lipid feedstock. It is process modifications to combine the oil extraction steps, fuel conversion steps (i.e. in situ transesterification, thermo-chemical process with non-catalytic heterogeneous biodiesel production) and fuel quality from sewage sludge.

The Characteristics of Spray and Exhaust Emissions Environmental Assessment of Adulteration and Convention Diesel (유사경유 및 정상경유 미립화특성과 배출가스 환경성평가)

  • Lee, Jong-Tae;Moon, Sun-Hee;Kim, Jeong-Soo;Kim, Sun-Moon;Park, Gyu-Tae;Lim, Yun-Sung
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.106-111
    • /
    • 2013
  • Adulterations fuel have been using in the vehicle in these days. Because gasoline, diesel prices are rising every day. so people find more cheap price fuel. Adulterations fuel caused a serious air pollution problems. Adulteration fuel were made from waste engine oil, waste paint. According to Government regulations permit to be used recycle fuel(adulteration fuel) only in industrial boiler. Unburned fuel pollutants are effected to human health. In this paper, the hazardous air pollutants characteristics in the diesel vehicles according to adulterations of vehicle fuels were carried out in the NEDC test mode in chassis dynamometer. It is revealed that the all of the regulation pollutants (THC, NOx, CO and PM) emission in the adulterations of vehicle fuels was increased also the green house gas, $CO_2$ was increased. In the hazardous air pollutants characteristics, the VOCs(Volitile Organic Compounds) BTEX(Benzene, Toluene, Ethylbenzene, Xylene) emissions in the adulterations of vehicle fuels showed higher level than these in the diesel fuels.

The Outlook of Future Aeropropulsion System (미래 항공기 추진기관의 전망)

  • Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.58-63
    • /
    • 2009
  • The global restriction on pollutant emissions and the soaring of crude oil price are expected to result in the change of future transportation system. Hydrogen is considered to be the leading candidate as an alternative energy source before other new alternative energy sources emerge. Scientists anticipate that hydrogen fuel gas turbine engine and fuel cell will be the power plant of the aircraft in the near future. To realize the aircraft powered by fuel cell system in the future, the technologies such as fuel cell with higher energy density, compressed gas or liquid storage system of hydrogen fuel, and efficient and lightweight electric motor have to be developed first.

Numerical Study on the Effect of Injection Direction on Mixture Formation Characteristics in DISI Gasoline Engine (가솔린 직분사식 불꽃점화기관에서 연료 분사 방향이 혼합기 형성에 미치는 영향에 관한 수치적 연구)

  • Kim, Taehoon;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.101-102
    • /
    • 2014
  • Rising oil price and environmental problems are causing automotive industry to increase fuel efficiency. Improved fuel efficiency in gasoline engine was made possible by development of DISI gasoline engine. Since fuel is injected inside cylinder directly, in-cylinder temperature can be reduced than multi-port injection engine and this leads to increased compression ratio. However, engine performance is largely dependent on mixture formation process due to in-cylinder fuel injection. Especially for spray guided and air guided DISI gasoline engine, injection direction is important factor to mixture preparation. It is because interaction between intake flow and spray affect fuel-air mixture. Hence, in this study, mixture formation characteristics were analyzed by varying injection direction using KIVA 3V release2 code. Residual gas was considered for assuming combustion. Therefore, initial condition for in-cylinder temperature was set equal to the end state of exhaust stroke of combustion cycle. Since angle between intake air flow direction and spray direction affects fluid flow and evaporation field, mixture distribution was affected by fuel injection direction dominantly.

  • PDF

Influences of the Surface Pollution Cause by the Marine Growth on Ship Hulls on Engine Performance and Output (선체 해양생물의 선저오염이 엔진성능과 출력에 미치는 영향)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.399-404
    • /
    • 2015
  • The cost of fuel in ships has recently increased due to a rapid increase in international oil prices and international restrictions regarding the greenhouse effect generated from the burning of fuel. Therefore, different methods for changing the hull designs for improving energy efficiency, developing coating for reducing friction resistances, developing additives for improving engine thermal efficiency, and low-speed operation for reducing fuel consumption have been considered. The developments of high-speed, large-scale, and energy-saving vessels are deemed essential to adapt to the recent high oil price era. Therefore, it is important to analyze Precisely the qualitative and quantitative changes in the resistance value of the local areas of the hull surface. In this study, the engine performance before and after docking was analyzed to examine friction resistance caused by marine growth on the hull as a basic study for improving the energy efficiency. The result was then presented by comparing it with the previous data for 2.5 years between docks to investigate the performance of the main engine, the change in friction resistances and loads, the fuel consumption and ship speed.

Performance Simulation of BOG Reliquefaction System for Dual Fuel Engine of LNG Carrier (LNG 선박 Dual Fuel 엔진용 BOG 재액화 시스템의 성능 시뮬레이션)

  • Lee, Sang-Hoon;Shin, You-Hwan;Lee, Yoon-Pyo;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.148-153
    • /
    • 2008
  • As the oil price is dramatically jumping up, the consumption of LNG is rapidly expanding and the size of LNG carriers becomes bigger. For LNG ships, the application of DF (Dual-Fuel) engines gradually increases because of high efficiency, which alternatively use diesel or BOG (Boil-Off Gas) from cargo tank as a fuel. The surplus BOG from LNG cargo tank should be exhausted by GCU or liquefied through the BOG reliquefaction system and returned back. This study focused into its operational characteristics through the process simulation using HYSYS and discussed details on the influence of the variations of some operational parameters such as a distribution ratio by the change of fuel mass flow into the DF engine.

  • PDF

The characteristic analysis and model of PEM fuel cell for residential application (가정용 고분자 연료전지의 모델과 특성해석)

  • Cho, Y.R.;Kim, N.H.;Han, K.H.;Joo, K.D.;Yun, S.Y.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.277-279
    • /
    • 2005
  • The imbalance of energy demand and supply caused by rapid industrialization around the world and the associated environmental issues require and alternative energy source with possible renewable fuels. Political instability and depletion of cruel oils are other factors that cause fluctuation of oil price. Securing a new alternative energy source for the next century became an urgent issue that our nation is confronting with. As a matter of fact, the fuel cell technology can be widely used as next generation energy regardless of regions and climate. Specially, the ability of expansion and quick installation enable one to apply it for distributed power, where the technology is already gaining remarkable attentions for the application. Particularly, leading industrialized nations are focusing on the PEM fuel dell with anticipation that this technology will find their place of applications in the vehicles and homes. In this study, demonstrate the multi physics modeling of a proton exchange membrane(PEM) fuel cell with interdigitated flow field design. The model uses current balances, mass balance(Maxwell-Stefan diffusion for reactant, water and nitrogen gas) and momentum balance(gas flow) to simulate the PEM fuel cell behavior.

  • PDF