• Title/Summary/Keyword: Fuel Oil

Search Result 1,226, Processing Time 0.029 seconds

Exhaust emissions of a diesel engine using ethanol-in-palm oil/diesel microemulsion-based biofuels

  • Charoensaeng, Ampira;Khaodhiar, Sutha;Sabatini, David A.;Arpornpong, Noulkamol
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.242-249
    • /
    • 2018
  • The use of palm oil and diesel blended with ethanol, known as a microemulsion biofuel, is gaining attention as an attractive renewable fuel for engines that may serve as a replacement for fossil-based fuels. The microemulsion biofuels can be formulated from the mixture of palm oil and diesel as the oil phase; ethanol as the polar phase; methyl oleate as the surfactant; alkanols as the cosurfactants. This study investigates the influence of the three cosurfactants on fuel consumption and exhaust gas emissions in a direct-injection (DI) diesel engine. The microemulsion biofuels along with neat diesel fuel, palm oil-diesel blends, and biodiesel-diesel blends were tested in a DI diesel engine at two engine loads without engine modification. The formulated microemulsion biofuels increased fuel consumption and gradually reduced the nitrogen oxides ($NO_x$) emissions and exhaust gas temperature; however, there was no significant difference in their carbon monoxide (CO) emissions when compared to those of diesel. Varying the carbon chain length of the cosurfactant demonstrated that the octanol-microemulsion fuel emitted lower CO and $NO_x$ emissions than the butanol- and decanol-microemulsion fuels. Thus, the microemulsion biofuels demonstrated competitive advantages as potential fuels for diesel engines because they reduced exhaust emissions.

COMBUSTION CHARACTERISTICS OF ESTERIFIED RICE BRAN OIL AS AN ALTERNATIVE FUEL IN A DIESEL ENGINE

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.399-406
    • /
    • 2006
  • The smoke emission of diesel engines is being recognized as one of the major source of the air pollution problems. This study investigates the potential of esterified rice bran oil to reduce smoke emission as an alternative fuel for diesel engines. Because the esterified rice bran oil has approximately a 10.5% oxygen content, the combustion of the diesel engine improved and exhaust smoke decreased. Gas chromatography was used to analyze not only the total amount of hydrocarbon but also the amount of hydrocarbon components from $C_1$ to $C_6$ in the exhaust gas to determine an exact source responsible for the remarkable reduction in the smoke emission. The number of individual hydrocarbon($C_1{\sim}C_6$) as well as the total amount of hydrocarbon of esterified rice bran oil reduced significantly compared to that of hydrocarbon of diesel fuel.

Comparative Economic Analysis on SOx Scrubber Operation for ECA Sailing Vessel

  • Jee, Jae-hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.262-268
    • /
    • 2020
  • The IMO (International Maritime Organization) has mandated the restriction of SOx emissions to 0.5 % for all international sailing vessels since January 2020. And, a number of countries have designated emission control areas for stricter environmental regulations. Three representative methods have been suggested to cope with these regulations; using low-sulphur oil, installing a scrubber, or using LNG (Liquefied Natural Gas) as fuel. In this paper, economic analysis was performed by comparing the method of installing a scrubber with the method of using low-sulphur oil without installing additional equipment. We suggested plausible layouts and compared the pros and cons of dif erent scrubber types for retrofitting. We selected an international sailing ship as the target vessel and estimated payback time and benefits based on navigation route, fuel consumption, and installation and operation costs. Two case of oil prices were analyzed considering the uncertainty of fuel oil price fluctuation. We found that the expected payback time of investment varies from 1 year to 3.5 years depending on the operation ratio of emission control areas and the fuel oil price change.

A Study for the Performance Improvement by Fumigation LPG on Diesel Engine using a Used Frying Oil (폐식용유를 사용한 디젤기관에서의 LPG 공급에 의한 성능개선에 관한 연구)

  • 조기현;황의현;백태실;정형길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-24
    • /
    • 2000
  • In this study, using frying oil, performance of engine and emission concentration were compared with the case of using diesel oil. And results are as follows. 1. Engine torque and brake horse power indicate nearly same value as the case of using diesel fuel. 2. Temperature of exhaust gas was increased with as high engine speed and load. 3. To reduce concentration of hydrocarbon, it is effective to operate using used frying oil in low engine speed and load, and adding LPG in high engine speed and load. 4. Concerning with concentration of carbon mono oxide and smoke emission, it was assured, that as engine load increased, lower concentration emitted in case of utilizing mixed fuel than that of utilizing pure diesel fuel.

  • PDF

A study on the recovery of useful components from waste tire (폐타이어로부터 유용성분의 회수에 관한 연구)

  • 이덕수
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.88-100
    • /
    • 1994
  • A study on the recovery of useful components from waste tire. This study was carried out investigate the recovery of fuel oil condensed from gases formed in the pyrolysis of waste tire. Energy to require the pyrolysis of waste tire was used the heat that was produced by the combustion of the gases from the pyrolysis of waste tire itself. The results are as follows; 1. Energy to require forming the fuel oil by the pyrolysis of waste tire was used only 1/6 quantities of waste tire for forming fuel oil. 2. The formed fuel oil were light oil, Kerosene and gasoline 3. The pollutants of combustion gas of patronizable gases was lower than standard Value.

  • PDF

Effects of Fuel Injection Timing on Combustion Characteristics of Biodiesel Blend Oil in Diesel Engine (디젤기관에서 바이오디젤 혼합유의 연소특성에 미치는 연료분사시기의 영향)

  • Lim, J.K.;Cho, S.G.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.10-15
    • /
    • 2012
  • Recently we have a growing interest in environmental pollution and alternative energy. Diesel engine is generally used to produce the power on the ground and the sea. However, the combustion characteristics are changed on account of the wear of fuel system and the altered ambient condition of the combustion chamber by the increment of the engine operation hour. Therefore combustion characteristics on fuel injection timing are experimentally investigated to find out the optimum fuel injection timing in the case of the aged diesel engine using biodiesel blend oil. Cylinder pressure, rate of pressure rise, rate of heat release and combustion gas temperature are risen by the advancing fuel injection timing, while the exhaust gas temperature and soot emission level are decreased by the advancing of fuel injection timing. The least specific fuel oil consumption is indicated at BTDC $26^{\circ}$ CA on the 75%load and at 1800rpm.

A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel- (디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시-)

  • 조진호;김형섭;박정률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.180-188
    • /
    • 1992
  • By means of the compatibility according to solving environmental pollution and energy problem due to the emissions of NOx and smoke from diesel engine this paper experimentally inspected the effect of using emulsified fuel, gas oil-water, for combustion characteristic, that is combustion pressure, pressure rise rate, heat generating rate, the period of ignition delay and specific fuel consumption, and CO, HC, NOx concentration and smoke density. When using emulsified fuel, as a water addition rate was increased, combustion pressure, pressure rise rate and heat generating rate was increased, the period of ignition delay was lengthening, the specific fuel consumption was some what increased in contrast to diesel fuel in low load, but deceased in high load region. And NOx concentration was decreased, CO concentration was increased in low load, but decreased in high load region, HC concentration was increased in contrast to diesel fuel in all region.

Study of HSDI Diesel Engine Development for Low Fuel Consumption (HSDI 디젤 엔진 연비 저감 개발에 대한 연구)

  • Chun, Je-Rok;Yu, Jun;Yoon, Kum-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.138-143
    • /
    • 2006
  • Modification of injector, oil ring tension reduction and oil pump rotor re-matching with optimization of relevant engine control parameters could drive fuel consumption reduction of HSDI diesel engine. A 5 holes injector was replaced with a 6 holes with smaller nozzle hole diameter and 1.5 k factor, and evaluated in a view of fuel economy and emission trade-offs. With introducing smaller nozzle hole diameter injector, PM(Particulate Matter) was drastically decreased for low engine load and low engine rpm. Modification of oil pump and oil ring was to reduce mechanical friction and be proved to better fuel economy. Optimization of engine operating conditions was a great help for the low fuel consumption. Influence of the engine operating parameters· including pilot quantity, pilot interval, air mass and main injection timing on fuel economy, smoke and NOx has been evaluated with 14 points extracted from NEDC(New European Driving Cycle) cycle. The fuel consumption was proved to $7\%$ improvement on an engine bench and $3.7\%$ with a vehicle.

Experimental Analysis of Propensity for Spontaneous Combustion of Low-Rank Coal Upgraded by Spray Coating with Heavy Oil (중질유 분무 코팅에 의한 저등급 석탄의 고품위화와 자연발화 특성 분석)

  • Chun, Dong Hyuk;Park, In Soo;Kim, Sang Do;Rhim, Young Joon;Choi, Ho Kyung;Yoo, Jiho;Lim, Jeong Hwan;Lee, Si Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • Upgrading technology has been studied for efficient utilization of low rank coal. Spray coating of heavy oil was applied on the upgrading process in order to stabilize low rank coal against spontaneous combustion. Low rank coal, which contains more than 30wt% of moisture, was upgraded to high calorific coal and stabilized by spray coating of heavy oil. It was identified that spray coating of heavy oil after drying coal is the optimum procedure of upgrading low rank coal. The experimental results show that more than 2wt% of heavy oil should be adsorbed on the coal in order to stabilize sufficiently for spontaneous combustion.

An Experimental Study on the Combustion Characteristics of Wastewater-Emulsion Fuel (Emulsion(B.C유+폐수)연료의 연소효율에 관한 실험적 연구)

  • 정진도
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2003
  • Emulsion fuel is a very attractive fuel because of its energy saving and pollution prevention properties. We investigated and compared the combustion efficiency of B-C oil and emulsion fuel i.e. fuel made from the mixture of B-C oil and waste water. By installing an R-type thermocouple and an optical pyrometer on each side of the boiler, and by placing a combustion analyzer at the point of gas emissions, We were able to measure and compare each flame temperature, combustion rate and the concentration of emitted gas when B-C oil and emulsion fuel are burned. The following results were obtained: The flame temperature of emulsion fuel at the front and rear of the boiler is about 50$^{\circ}C$ lower than the flame temperature of B-C oil. The reason for this difference in temperature is that both latent and sensible heat is lost due to the moisture in the waste water of emulsion fuel. An analysis of emitted gases shows that when emulsion fuel is used polluting substances decrease also the concentration of CO becomes considerably lower. The combustion efficiency for B-C oil and emulsion fuel is 85.5% and 84.8% respectively.