• Title/Summary/Keyword: Fuel NOx

Search Result 933, Processing Time 0.022 seconds

Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System (직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구)

  • Yoon, Cheon-Han;Kim, Kyung-Hoon
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

It's effects for engine emission of water/oil emulsified fuel (Water/Oil 에멀젼 연료가 배출가스에 미치는 영향)

  • Kim, Moon-Chan;Lee, Chang-Suk
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • In this study, the characteristics of emulsified fuel and engine emissions were studied. Emulsified fuel which composed of water and diesel was manufactured by using homogenizer and ultrasonic generator. Engine emissions were studied whit engine dinamometer. In emulsified fuel, density and viscosity were increased with increasing water contents, but viscosity was decreased over 60% of water in emulsion fuel. The emulsion type of W/O changed to that of O/W over 60% of water in emulsion fuel. In the results of engine dinamometer test, NOx concentration and smoke density were reduced with increasing water contents in emulsified fuel but reciprocal in the case of THC, CO. Temperature and power were reduced with increasing water contents in emulsion fuel. In conclusion, it seemed that using emulsified fuel for diesel engine was effective for reducing NOx concentration and smoke density.

Effect of Hydrocarbon Additives on SNCR DeNOx Characteristics under Oxidizing Diesel Exhaust Gas Conditions

  • Nam, Changmo
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.809-820
    • /
    • 2018
  • DeNOx experiments for the effects of hydrocarbon additives on diesel SNCR process were conducted under oxidizing diesel exhaust conditions. A diesel-fueled combustion system was set up to simulate the actual cylinder and head, exhaust pipe and combustion products, where the reducing agent $NH_3$ and $C_2H_6/diesel$ fuel additives were separately or simultaneously injected into the exhaust pipe, used as the SNCR flow reactor. A wide range of air/fuel ratios (A/F=20~40) were maintained, based on engine speeds where an initial NOx level was 530 ppm and the molar ratios (${\beta}=NH_3/NOx$) ranged between 1.0~2.0, together with adjusting the amounts of hydrocarbon additives. Temperature windows were normally formed in the range of 1200~1350K, which were shifted downwards by 50~100K with injecting $C_2H_6/diesel$ fuel additives. About 50~68% NOx reduction was possible with the above molar ratios (${\beta}$) at the optimum flow #1 ($T_{in}=1260K$). Injecting a small amount of $C_2H_6$ or diesel fuel (${\gamma}=hydrocarbon/NOx$) gave the promising results, particularly in the lower exhaust temperatures, by contributing to the sufficient production of active radicals ($OH/O/HO_2/H$) for NOx reduction. Unfortunately, the addition of hydrocarbons increased the concentrations of byproducts such as CO, UHC, $N_2O$ and $NO_2$, and their emission levels are discussed. Among them, Injecting diesel fuel together with the primary reductant seems to be more encouraging for practical reason and could be suggested as an alternative SNCR DeNOx strategy under diesel exhaust systems, following further optimization of chemicals used for lower emission levels of byproducts.

Experimental Study for NOx Reduction Using Reburning and Numerical Study with FLUENT (재연소를 이용한 NOx 저감의 실험적 연구 및 FLUENT를 이용한 수치적 연구)

  • Kim, Jae-Kwan;Kim, Hak-Young;Baek, Seung-Wook
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1967-1972
    • /
    • 2008
  • Reburning is an efficient combustion technology to reduce nitrogen oxide by injecting hydro-carbon fuel to the downstream of the main combustion. In this paper LPG has been used not only as main fuel but also as reburn fuel and air was used as an oxidizer with 15kW swirl burner. Experimental studies have been done to evaluate effect of reburning for NOx reduction. Also to examine the effect of the amount of burnout air for complete combustion by reburn fuel on NOx reduction, test was conducted by reducing the amount of burnout air. Computational fluid dynamic (CFD) simulation was performed using the commercial CFD code FLUENT 6.3 to simulate experimental results and investigate the thermo-chemical characteristics. An evaluation of reaction models for swirl burner has been carried out for propane-air with two step finite-rate eddy-dissipation model in FLUENT.

  • PDF

Soot and NOx Emissions in Laminar Diffusion Flames: Effects of Air-Side versus Fuel-Side Diluent Addition (층류 확산화염에서의 매연과 질소산화물의 배출특성 : 공기측/연료측 희석제 첨가에 따른 영향)

  • Lee, Jong-Ho;Eom, Jae-Ho;Park, Chul-Woong;Jun, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Present study has been conducted to see the relative effects of adding N: to fuel-side and air-side on flame structure, soot formation and NOx emissions. Experiments were carried out to ascertain to what degree chemical kinetics and/or molecular transport effects can explain the differences in soot formation and NOx emission by studying laminar diffusion flames. Direct photograph was taken to see the flame structure. CARS techniques was used to get the flame temperature profiles. And spatial distribution of soot could be obtained by PLII method. CHEMKIN code was also used to estimate the global residence time to predict NOx emissions at each condition. Results from these studies indicate that fuel-side dilution is more effective than air-side dilution in view of NOx emissions. However, air-side dilution shows greater effectiveness over fuel-side dilution in soot formation. And turbulent mixing and heat transfer problems were thought to be considered in practical applications.

Effects of Soybean Biodiesel Fuel on Exhaust Emissions in Compression Ignition Combustion (대두유 바이오 디젤연료가 압축 착화 연소에서 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.941-946
    • /
    • 2010
  • This study aims to investigate the effects of soybean biodiesel fuel on exhaust emissions with regards to two combustion modes: conventional combustion(existence of PM-NOx trade-off behavior) and low temperature combustion(LTC) in a 1.7 L common rail direct injection diesel engine. As compared to conventional combustion, LTC was achieved by adopting a heavier exhaust gas recirculation and strategic injection parameter optimization. Two sets of fuels, i.e. ultra low sulfur diesel(ULSD) and 20% volumetric blends of soybean biodiesel with ULSD(B20) were used. Regardless of the fuel type, in LTC the simultaneous reduction of PM and NOx was observed and both levels were significantly lower than in case of conventional combustion. Under the given engine operating condition in the case of conventional combustion, B20 produced less PM and more NOx than ULSD. In the case of LTC combustion, B20 produced more PM and NOx than ULSD.

Combustion and Emission Characteristics of 4 Cylinder Common-Rail DI Diesel Engine with Biodiesel Blended Fuel (4 실린더 직접분사식 디젤엔진에서 바이오디젤 혼합연료의 연소 및 배기특성)

  • Lee, Dong-Gon;Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • This paper describes the effects of biodiesel blended fuel on the engine combustion and emission characteristics in a four cylinder CRDI(Common-rail direct injection) diesel engine. In this work, the biodiesel-diesel blended fuel(20% of biodiesel and 80% of ULSD(ultra low sulfur diesel) by volume ratio, BD20) and ULSD fuel are used under the various injection pressures and engine speeds. The experimental results of BD20 and ULSD fuel show that NOx emissions were increased and soot emissions were decreased with the increase of injection pressure. In particular, NOx emissions were slightly increased for the BD20 fuel, however, soot emissions were significantly reduced compared to the ULSD fuel. When the engine speed is increased from 1000rpm to 2000rpm, NOx emissions are decreased at all tested conditions, and soot emissions are largely increased at lower injection pressure.

The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine (대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구)

  • Yoon, Wook-Hyeon;Kim, Byung-Seok;Kim, Dong-Hun;Kim, Ki-Doo;Ha, Ji-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

Characteristics of Multi staged Combustion on a Double-cone Partial Premixed Nozzle (이중 콘형 부분 예혼합 GT 노즐의 다단 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Experimental investigations were conducted to understand the multi-staged combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Multi-staged combustion is implemented by injecting the fuel through the existing manifold of the side slots as well as through the apex of the cone with two fuel injection angles which are slanted or axial. NOx and CO emissions, and wall temperature distributions were measured for various fuel distributions and operating conditions. Results show that NOx emissions are decreased when the fuel distribution to the apex is 3% of the total amount of fuel, which is due to more uniform fuel distribution inside the nozzle, hence less hot spots at the flame. NOx emissions are rather increased when the fuel distribution to the apex is 8% of the total amount of fuel for axial fuel injection by occurrence of flash back in premixing zone of burner.

A Study for Development and Application of a Low NOx 2-staged Swirl Atomizer (저 NOx2단 선회 분무식 노즐 개발 및 실기적용 연구)

  • Song, Si-Hong;Kim, Hyeok-Pil;An, Sang-Taek;Lee, Ik-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1793-1801
    • /
    • 2001
  • A study of low NOx atomizer was carried out to reduce nitrogen oxides(NOx) in a liquid fuel burner flame. The basic concept of NOx reduction in this atomizer is the fuel 2-staging combustion which is generated by a single atomizer forming two different stoichiometric flames. Two orifices swirl atomizer was selected and modified to realize this concept, and it was tested to obtain the design process of low NOx atomizer. These experiments were achieved to find out the relationship between the injection pressures and the flow rate, spray angle and drop size of swirl atomizer as well as to confirm the NOx reduction concept in real plant(power boiler). In comparison between experimental and theoretical results, the correct discharge coefficient and spray angle were obtained. In real burning test, NOx reduction rate was reached to above 27% of the case using conventional swirl atomizer.