• Title/Summary/Keyword: Fuel Management

Search Result 1,012, Processing Time 0.027 seconds

Preliminary study and development of $kW_e$-class liquid fuel based SOFC system (액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발)

  • Yoon, Sang-Ho;Kim, Sun-Young;Bae, Joong-Myeon;Baek, Seung-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF

Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application (자동차용 연료전지 냉각계통 열관리 동적 모사)

  • Han, Jae Young;Lee, Kang Hun;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1185-1192
    • /
    • 2012
  • The typical operating temperature of an automotive fuel cell is lower than that of an internal combustion engine, which necessitates a refined strategy for thermal management. In particular, the performance of the cooling module has to be higher for a fuel cell system because the temperature difference between the fuel cell and the surrounding is lower than in the case of the internal combustion engine. Even though the cooling system of an automotive fuel cell determines the operating temperature and temperature distribution of the fuel cell, it has attracted little research attention. This study presents the mathematical model of a cooling system for an automotive fuel cell system using Matlab/$Simulink^{(R)}$. In particular, a radiator model is developed for design optimization from the development stage to the operating stage for an automotive fuel cell. The cooling system model comprises a fan, pump, and radiator. The pump and fan model have an empirical relation, and the dynamics of the pump and fan are only explained by motor dynamics. The basic design study was conducted, and the geometric setup of the radiator was investigated. When the control logic was applied, the pump senses the coolant inlet temperature and the fan senses the coolant out temperature. Additionally, the cooling module is integrated with the fuel cell system model so that the performance of the cooling module can be investigated under realistic operating conditions.

The Effect of Stack Clamping Pressure on the Performance of a Miniature PEMFC Stack (소형 고분자 연료전지 스택의 체결압력에 따른 성능 특성)

  • Kim, Byung-Ju;Yim, Sung-Dae;Sohn, Young-Jun;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Young-Chai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.499-504
    • /
    • 2009
  • The effect of gas diffusion layer (GDL) compression caused by different stack clamping pressures on fuel cell performance was experimentally studied in a miniature 5-cell proton exchange membrane fuel cell (PEMFC) stack. Three stacks with different GDL compressions, 15%, 35% and 50%, were prepared using SGL 10BC carbon fiber felt GDL and Gore 57 series MEA. The PEMFC stack performance and the stack stability were enhanced with increasing stack clamping pressure resulting in the best performance and stability for the stack with higher GDL compressions up to 50%. The excellent performance of the stack with high GDL compression was mainly due to the reduced contact resistance between GDL and bipolar plate in the stack, while reduced gas permeability of the excessively compressed GDL in the stack hardly affected the stack performance. The high stack clamping pressure also resulted in excessive GDL compression under the rib areas of bipolar plate and large GDL intrusion into the channels of the plate, which reduced the by-pass flow in the channels and increase gas pressure drop in the stack. It seems that these phenomena in the highly compressed stack enhance the water management in the stack and lead to the high stack stability.

Determination of Design Basis for a Storage System for Spent Fuel in Korea (국내 사용후핵연료 저장시스템의 설계기준 설정 인자 고찰)

  • Yoon, Jeong-Hyoun;Lee, Eun-Yong;Woo, Sang-In;Kim, Tae-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • Safe operation and maintenance of engineered dry storage systems for spent fuel from nuclear power plants basically depends on adequately adopted design requirements. The most important design target of the system are those which provide the necessary assurances that spent fuel can be received, handled, stored and retrieved without undue risk to health and safety of workers and the public. To achieve these objectives, the design of the system incorporates features to remove spent fuel residual heat, to provide for radiation protection, and to maintain containment over the lifespan of the system as specified in the design specifications. The features also provide for all possible anticipated operational occurrences and design basis events in accordance with the design basis as guided by the designated regulations. The general performance requirements of a projected storage system are introduced in this paper. The storage system is designed to store fuel assemblies in associated with designated regulatory requirements. Small increases/decreases in maximum burnup can be adjusted with cooling time. These variations are compensated for by a corresponding small site-specific increase/decrease in the design basis-cooling period, as long as the maximum heat load and radioactivity of loaded fuel assemblies are met. Generic design basis events considered for the storage system are summarized. Shielding and radiological requirements along with mechanical and structural are derived in this study.

A Study on the Radiation Source Effect to the Radiation Shielding Analysis for a Spent-Fuel Cask Design with Burnup-Credit (연소도이득효과를 적용한 사용후핵연료 수송용기의 방사선원별 차폐영향 분석)

  • Kim, Kyung-O;Kim, Soon-Young;Ko, Jae-Hoon;Lee, Gang-Ug;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The radiation shielding analysis for a Burnup-credit (BUC) cask designed under the management of Korea Radioactive Waste Management Corporation (KRMC) was performed to examine the contribution of each radiation source affecting dose rate distribution around the cask. Various radiation sources, which contain neutron and gamma-ray sources placed in active fuel region and the activation source, and imaginary nuclear fuel were all considered in the MCNP calculation model to realistically simulate the actual situations. It was found that the maximum external and surface dose rates of the spent fuel cask were satisfied with the domestic standards both in normal and accident conditions. In normal condition, the radiation dose rate distribution around the cask was mainly influenced by activation source ($^{60}Co$ radioisotope); in another case, the neutron emitted in active fuel region contributed about 90% to external dose rate at 1m distance from side surface of the cask. Besides, the contribution level of activation source was dramatically increased to the dose rates in top and bottom regions of the cask. From this study, it was recognized that the detailed investigation on the radiation sources should be performed conservatively and accurately in the process of radiation shielding analysis for a BUC cask.

Canadian Public and Stakeholder Engagement Approach to a Spent Nuclear Fuel Management (사용후핵연료 관리를 위한 캐나다 공론화 방안)

  • Hwang, Yong-Soo;Kim, Youn-Ok;Whang, Joo-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • After Canada has struggled with a radioactive waste problem over for 20 years, the Canadian government finally found out that its approach by far has been lack of social acceptance, and needed a program such as public and stakeholder engagement (PSE) which involves the public in decision-making process. Therefore, the government made a special law, called Nuclear Fuel Waste Act (NFWA), to search for an appropriate nuclear waste management approach. NFWA laid out three possible approaches which were already prepared in advance by a nuclear expert group, and required Nuclear Waste Management Organization (NWMO) to be established to report a recommendation as to which of the proposed approaches should be adopted. However, NFWA allowed NWMO to consider additional management approach if the other three were not acceptable enough. Thus, NWMO studied and created a fourth management approach after it had undertaken an comparison of the benefits, risks and costs of each management approach: Adaptive Phased Management. This approach was intended to enable the implementers to accept any technological advancement or changes even in the middle of the implementation of the plan. The Canadian PSE case well shows that technological R&D are deeply connected with social acceptance. Even though the developments and technological advancement are carried out by the scientists and experts, but it is important to collect the public opinion by involving them to the decision-making process in order to achieve objective validity on the R&D programs. Moreover, in an effort to ensure the principles such as fairness, public health and safety, security, and adoptability, NWMO tried to make those abstract ideas more specific and help the public understand the meaning of each concept more in detail. Also, they utilized a variety of communication methods from face-to-face meeting to e-dialogue to encourage people to participate in the program as much as possible. Given the fact that Korea has been also having a hard time in dealing with spent nuclear fuel management, all of these efforts that Canada has made with a PSE program would give good lessons and implications to the Korean case. In conclusion, as a deliberative participation program, PSE could be a possible breakthrough approach for the Korean spent nuclear fuel management.

  • PDF

Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell (5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계)

  • Jeong, Jin Hee;Han, Jae Young;Sung, Yong Wook;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2015
  • Solid oxide fuel cell operate at high temperature ($800{\sim}1000^{\circ}C$). High temperature have an advantage of system efficiency, but a weak durability. In this study, linear state space controller is designed to handle the temperature of solid oxide fuel cell system for proper thermal management. System model is developed under simulink environment with Thermolib$^{(R)}$. Since the thermally optimal system integration improves efficiency, very complicated thermal integration approach is selected for system integration. It shows that temperature response of fuel cell stack and catalytic burner are operated at severe non-linearity. To control non-linear temperature response of SOFC system, gain scheduled linear quadratic regulator is designed. Results shows that the temperature response of stack and catalytic burner follows the command over whole ranges of operations.

A statistical procedure of analyzing container ship operation data for finding fuel consumption patterns (연료 소비 패턴 발견을 위한 컨테이너선 운항데이터 분석의 통계적 절차)

  • Kim, Kyung-Jun;Lee, Su-Dong;Jun, Chi-Hyuck;Park, Kae-Myoung;Byeon, Sang-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.633-645
    • /
    • 2017
  • This study proposes a statistical procedure for analyzing container ship operation data that can help determine fuel consumption patterns. We first investigate the features that affect fuel consumption and develop the prediction model to find current fuel consumption. The ship data can be divided into two-type data. One set of operation data includes sea route, voyage information, longitudinal water speed, longitudinal ground speed, and wind, the other includes machinery data such as engine power, rpm, fuel consumption, temperature, and pressure. In this study, we separate the effects of external force on ships according to Beaufort Scale and apply a partial least squares regression to develop a prediction model.

Performance Characteristics of the Thermal Management System for Passenger Hydrogen Fuel Cell Vehicle (수소연료전지 자동차의 열관리시스템 성능특성에 관한 연구)

  • Lee, Ho-Seong;Won, Jong-Phil;Cho, Chung-Won;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.986-993
    • /
    • 2012
  • The objective of this study is to investigate performance characteristics of the thermal management system for passenger hydrogen fuel cell vehicle under various operating conditions. The thermal management systems comprised of a stack cooling system, an electric device cooling system and an air conditioning system for a passenger room were tested with driving conditions. As a result, in highway driving mode, the cooling performance of the stack cooling system with air conditioning on condition was 28.8 % lower than that of the air conditioning off condition. And cooling load of the electric cooling system in the city driving mode was 65.6% higher than that of the highway driving mode.

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.