• 제목/요약/키워드: Fuel Injector

검색결과 562건 처리시간 0.022초

과전류 제한 기능을 갖는 연료 분사장치의 고속 구동 방법 (High Speed Operation of Fuel Injectors with Over Current Protection)

  • 양형열;서의석
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2043-2048
    • /
    • 2011
  • High speed drive method for a fuel injector cleaner with current control is presented in this paper. The fuel injector cleaner is used for cleaning the fuel injectors in vehicles when it is clogged with deposit and rust. The fuel injector cleaner cleans the fuel injector by turning on and off the fuel injector rapidly. When the fuel injectors are cleaned, the switching speed is very important. However, when the fuel injector is turned off, the residual current in the fuel injector coil slows down the return action of the plunger in the fuel injector deteriorating performance and speed of the fuel injector cleaner. In this paper, fast turn off operation method of fuel injectors is developed for more effective cleaning. The simulation and experiment results show the validity of the proposed method.

A Comprehensive Study on Fuel Injector Test Bench for Heavy Duty Engine

  • Das, Shubhra Kanti;Thongchai, Sakda;Lim, Ocktaeck
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.195-201
    • /
    • 2015
  • This study discusses a fuel injector test bench containing a mechanical type fuel supply system for heavy duty diesel engine. The main focus of this study was to evaluate the design stability of the test bench, which basically measures the injector durability of a multi-hole heavy duty injector by using pure diesel as a test fuel. In this experiment, diesel spray was controlled by a specially designed control box and all the experiments were carried out to measure e.g. fuel injection pressure and fuel injection quantity to understand the injection status which is interlinked with the stability factor of total test bench design. Also, the durability test was performed to understand the heavy duty operation lastingness of the designed system and the flow rate of the installed distributor pump in the fuel supply system of this studying test bench was compared with LO-1 and LO-2 pump. The results of the above mention tests revealed that the injector test bench design and control system can serve the purpose for heavy duty injector.

연료 종류에 따른 이중 오리피스 노즐의 분무 특성 연구 (A Spray Characteristics of Dual Orifice Injector with Different Fuel Properties)

  • 이동훈;최성만;박정배
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.7-15
    • /
    • 2003
  • The effects of fuel density and fuel viscosity on spray characteristics were investigated under two different gas turbine fuels and various fuel supply pressure conditions through measurement of SMD, number density and volume flux by using PDPA system in dual orifice injector for gas turbine engines. In this study, we found out that the droplet size and spray structure are strongly depend on fuel density for dual orifice injector. The spray characteristics of high density fuel in dual orifice injector are similar with the characteristics of low density fuel in single orifice injector. The shear region between primary main fuel stream and secondary main fuel stream is examined in low density fuel condition but not exist in high density fuel condition, then this shear region is very important in quality of gas turbine spray. There are worth consideration for the effect of fuel density on spray characteristics in frontal device design to improve combustion efficiency.

  • PDF

가솔린엔진용 포트분사식 인젝터의 분무특성에 관한 연구 (Study on the Spray Characteristics of a Port Fuel Injector for a Gasoline Engine)

  • 이상인;이성원;박성영
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.61-66
    • /
    • 2010
  • Fuel spray characteristics of the gasoline engine injector has been studied experimentally. To provide fundamental performance data of 4-hole and 12-hole injectors, spray fuel-mass distribution, wall wetting fuel amount and visualization of injectors have been tested and measured with various fuel supply pressure conditions. Spray visualization has been performed to analyze spray formation, spray angle, stream width and penetration length. Test result shows that wall wetting is greatly influenced by the induction air amount and spray atomization. Spray visualization shows that the 12-hole injector has robust performance characteristics with various fuel supply pressure conditions compared with the 4-hole injector. 4-hole injector generates relatively less wall-wetting fuel amount than 12-hole injector does.

인젝터 구동 전류 패턴 변화가 솔레노이드 타입 커먼레일 인젝터 분사율 특성에 미치는 영향에 대한 컴퓨터시뮬레이션 (A Computer Simulation of Injection Rate Characteristics of Solenoid Type Common Rail Injector According to Injector Driving Current Patterns)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.114-121
    • /
    • 2019
  • The effect of injector driving current pattern on fuel injection rate of solenoid diesel common rail injector was studied by computer simulation. The time resolved fuel injection rate and injected quantity per stroke of a common rail injector driven with the five current patterns were computer simulated. The fuel injection rate and injected quantity per stroke according to the rail pressure and fuel injection period were also computer simulated. When the common rail injector was driven with the five driving current patterns of peak & hold, there was no difference in the fuel injection rate in the peak section regardless of all the current patterns of the five cases. On the other hand, the magnitude of the hold current value influenced the injection rate and injected quantity per stroke. That is, in the current pattern of three cases where the hold current value is equal to or more than a constant value of the peak current value, the fuel injection rates for the given common rail rail pressure and injection period are same one another. On the other hand, the current pattern of the two cases, in which the hold current value is smaller than a certain value, there is a large fluctuation in the fuel injection rate.

인젝터 노즐 홀 직경의 변화에 따른 DME 커먼레일 연료 분사 시스템의 분무 특성에 관한 연구 II (An Investigation on the Spray Characteristics of DME with Variation of Nozzle Holes Diameter using the Common Rail Fuel Injection System)

  • 이세준;임옥택
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.1-7
    • /
    • 2013
  • DME spray characteristics were investigated about varied ambient pressure and fuel injection pressure using the DME common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system with DME cooling system was used since DME has properties of compressibility and vaporization in atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray analysis parameters were spray shape, penetration length, and spray angle at six nozzle holes. Three types of injector were used, the nozzle holes diameter were 0.166 mm (Injector 1), 0.250 mm (Injector 2), and 0.250 mm with enlargement of orifice hole from 0.6 mm to 1.0 mm (Injector 3). The fuel injection pressure was varied by 5MPa from 35 to 70MPa when the ambient pressure was varied 0, 2.5, and 5MPa. When using Injector 3 in comparison to the others, the DME injection quantity was increased 1.69 ~ 2.02 times. Through this, it had the similar low heat value with diesel which was injected Injector 1. Among three types of injector, Injector 3 had the fastest development velocity of penetration length. In case of spray angle, Injector 2 had the largest spray angle. Through these results, only the way enlargement the nozzle holes diameter is not the solution of DME low heat value problem.

연료 고압화에 의한 LPDi 기관의 인젝터 내 기포발생 억제에 관한 기초 연구 (A Fundamental Study on Suppressing the Bubbling in the Injector of LPDi Engine by High Pressurization of Fuel)

  • 노기철;이종태
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.47-53
    • /
    • 2007
  • To suppress the bubble generated in the liquid LPG direct injector is the most important to develop the LPDi engine. It was found in the previous study that bubbling phenomenon in the injector of the LPDi engine is decisively influenced by pressure of fuel and temperature around the injector. Therefore, in this study, the effect on suppressing the bubbling in the LPDi injector by high pressurization of fuel is analyzed and the spray characteristics are also studied. As a result, it is found that the bubbling in the LPDi injector is radically suppressed when the pressure of fuel is over 50MPa. The bubbling is suppressed when the pressure of fuel is over 3MPa if the inserted position of the injector is considered. Also, it is confirmed that the higher the pressure of fuel is the longer spray tip penetration and is the larger spray angle. As the ambient pressure increases, spray tip penetration decreases and spray angle increases due to the increase of drag force.

직접 분사식 디젤 기관 인젝터의 연료 분무 특성 (Spray Characteristics of Fuel Injector in DI Diesel Engine)

  • 이창식;김민규;전원식;진다시앙
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.75-81
    • /
    • 2001
  • This paper presents the atomization characteristics of single hole injector in the direct injection type diesel engine. The spray characteristics of fuel injector such as the droplet size and velocity were measured by phase Doppler particle analyzer. In this paper, the atomization characteristics of fuel spray are investigated for the experimental analysis of the measuring data by the results of mean diameter and mean velocity of droplet. The effect of fuel injection pressure on the droplet size shows that the higher injection pressure results in the decrease of mean droplet diameter in the fuel spray. The minimum size of fuel spray droplet appears on the location of 40mm axial distance from nozzle exit of diesel injector. Based on the experimental results, the correlation between the droplet diameter and mean velocity of the diesel spray due to the change of axial and radial distance from the nozzle tip were investigated.

  • PDF

직분식 가솔린기관 인젝터의 연료 분무 특성 (Fuel Spray Characteristics of GDI Injector)

  • 권상일;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

구동방식이 다른 서보유압형 인젝터의 분사응답성 연구 (Study on Injection Response of Servo-Hydraulic Injector with Different Actuation Method)

  • 권지원;정명철;이진욱
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, high-pressure injection characteristic of servo hydraulic injector as the key component of diesel CRDi system, which is driven by solenoid and piezo-actuator were examined by experimental analysis. High-pressure injection characteristic of standard diesel fuel injected at high pressure up to 160 MPa was investigated at high-pressure chamber by using a high-speed camera for spray visualization and quantitative analysis. By this study, we found that the piezo-driven injector has better performances in controlling the fuel injection with the high pressure, including fuel quantity, spray penetration length and spray velocity, than that of a solenoid-driven injector. In particular, the needle response time for start of injection in piezo-driven injector was faster of about $125{\mu}s$ than that of solenoid-driven injector. Consequently, it is known that the piezo-driven injector has more degrees of freedom in controlling the fuel injection with the high pressure than solenoid-driven injector.