• Title/Summary/Keyword: Fuel Injection system

Search Result 747, Processing Time 0.028 seconds

Simulation on the Characteristics of PLN Diesel Injection System by Cam Profile (연료캠 형상에 따른 PLN 디젤 분사계의 분사특성에 관한 시뮬레이션)

  • Lee, J.H.;Wang, W.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1997
  • In this study, in order to investigate the influence of cam profile on the injection rate, the characteristics of injection in PLN (pump - line - nozzle) diesel injection system were simulated. Six types of the profile of fuel cam were used for simulation. The maximum injection pressure and maximum injection rate of initial and end phase were analyzed to demonstrate the characteristics of injection. The mathematical model of the injection system and the computation results were verified by experimental results. Simulation results showed that the maximum injection pressure, maximum injection rate, injection quantity and pressure drop in the end phase were proportional to the velocity of fuel cam during the effective stroke.

  • PDF

Liquid LPG Spray Characteristics With Injection Pressure Variation;Comparison with Diesel Spray (분사압력변화에 따른 액체 LPG 분무특성;디젤분무와의 비교)

  • Lim, Hee-Sung;Park, Kweon-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.21-26
    • /
    • 1999
  • Liquefied petroleum gas(LPG) has been used as motor fuel due to its low emissions and low cost. The fuel feeding system has been improved with stringent requirement for exhaust emissions. LPG carburation system was firstly introduced, then the system changed into a gas injection system controlled precisely, but those gas feeding system has a limitation on improving power output. In order to improve an engine performance, a multi-point port injection system was introduced recently, and a liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray from diesel injectors. The spray images are visualized and compared with diesel sprays in a wide injection pressure range. The photographs show much wider dispersion of LPG sprays.

  • PDF

A Study on the In-Cylinder Injection Type Hydrogen Fueled S.I. Engine (연소실내 분사식 수소연료기관의 특성에 관한 연구)

  • 조우흠;이형승;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1702-1708
    • /
    • 1995
  • Owing to the serious problem of hydrocarbon fuel such as environmental pollution, the development of alternative fuel is very urgent. To adopt hydrogen to the internal combustion engine, a solenoid-drive type in-cylinder injection system was constructed. The injection system was installed to the single cylinder research engine, and the engine performance and the emission of citric oxide were tested upon the fuel-air equivalence ratio and the spark timing. In the case of in-cylinder injection system, hydrogen is injected after the intake valve is close, so it is possible to operate the engine without the back fire and the fall of its volumetric efficiency. In the region of the fuel-air equivalence ratio below 0.5, hydrogen and air aren't well mixed and the thermal efficiency is lowered, so the nozzle should be designed to inject hydrogen uniformly into the combustion chamber. In the region of the fuel-air equivalence ratio above 0.7,the fuel-air mixture burns very fast and the amount of citric oxide emission increases rapidly, so the spark timing should be retarded as compared with MBT.

Effect of Injector Energizing Duration on the Atomization Characteristics of Biodiesel Fuel (인젝터 통전기간이 바이오디젤 연료 미립화에 미치는 영향)

  • Suh, Hyun-Kyu;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • This study investigates the influence of energizing duration on the fuel atomization characteristics of biodiesel injected through a high pressure common-rail injector. In order to analyze the effect of energizing duration on the fuel injection rate performance, the injection rate of biodiesel fuel is obtained from the pressure variation in the tube filled with fuel in injection measuring system. On the other hand, the atomization characteristics of biodiesel was measured and compared in terms of Sauter mean diameter(SMD), arithmetic mean diameter(AMD), droplet mean velocity, and detected droplets number by applying a phase Doppler particle analyzer(PDPA). It was revealed that the injection mass and maximum injection rate increase with increase of the energizing duration. Moreover, the increase of energizing duration improves the atomization performance of biodiesel fuel because it induces higher droplets momentum and velocity.

  • PDF

A Study on the Lean Combustion of the Gasoline Engine with Air Assisted Fuel Injection System (공기 보조 연료 분사 장치가 있는 가솔린 기관의 희박 연소에 관한 연구)

  • Kim, S.W.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1994
  • This paper describes the effect of air assisted fuel injection system(AAI) using compressed air to improve the performance of lean combustion engine. AAI is designed to promote fuel atomization and intake flow. In order to investigate the performance of engine with AAl, experiments are conducted varying the engine revolution speed, lean air-fuel ratio and intake manifold pressure. Compared with the original engine, the performance of the engine with MI is improved as the air-fuel mixture becomes leaner or the engine load becomes lower. The descreasing rate of BSFC is propotional to the relative air-fuel ratio and the lean misfire limit extended more than 0.2 relative airfuel ratio.

  • PDF

A Study on the Performance Characteristic of Common Rail High Pressure Pump (커먼레일 시스템용 고압펌프의 성능 특성에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.5-10
    • /
    • 2013
  • Diesel engines have the advantages of good fuel efficiency and low emissions. Therefore, car makers have been developed various kinds of diesel engine management system to clean up emissions while improving fuel efficiency. One of them is the common rail system. In the common rail system, diesel fuel is injected into the combustion chamber at ultra high pressures up to 1,800 bar to ensure more complete combustion for cleaner exhaust gas, and highly precise multiple injection reduces NOx emission, combustion noise and vibration. Generally speaking, common rail system consists of booster pump, high pressure pump, common rail, injectors, control valves, and sensors. The high pressure pump receives low pressure fuel from the booster pump and supply high pressure fuel to injectors through the high pressure common injection rail. Therefore, high pressure pump has an important role in common rail system. In this paper, we have investigated the performance of high pressure pump of common rail system.

Spray Penetrations of Dimethyl Ether (DME) and Diesel for the Variation of Injection Rate (분사율 변화에 따른 Dimethyl Ether (DME)와 디젤의 분무도달거리)

  • Choi, Wook;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.16-22
    • /
    • 2004
  • Dimethyl Ether (DME) has been considered as one of the most attractive alternative fuels for a compression ignition engine. The major advantage of DME-fuelled engine is a great potential for soot-free combustion without sacrificing an inherent high thermal efficiency of diesel engine, despite a necessity for modification of the conventional fuel injection system. An experimental study on DME and conventional diesel sprays was conducted by employing a common-rail type fuel injection system with a 5-holes sac type nozzle, including a constant volume vessel pressurized with nitrogen gas. The injection rates of DME and diesel fuel were recorded with the Bosch type injection rate meter. The injection delay of DME was shorter than that of diesel fuel. The measured injection rates of DME and diesel fuel were correlated with spray penetrations. The prediction method of spray penetration was established using the injection rates, which was verified with the Dent's penetration model and found to agree well for DME case.

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

Spray Characteristics of the Rotating Fuel Nozzle with Orifice Geometry (회전연료노즐 형상변경에 따른 분무특성)

  • Jang, Seong-Ho;Choi, Hyun-Kyung;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.240-243
    • /
    • 2008
  • An experimental study was conducted to understand spray characteristics of rotating fuel nozzle by using high speed rotational system. The experimental apparatus consist of a fuel injection system, high speed rotational system, and acrylic case. The test is performed with several diameters and number of injection orifices. Spray characteristics such as droplet size and velocity are measured by PDPA(Phase Doppler Particle Analyzer). From the test results, we could understand the spray characteristics of rotating fuel nozzle with orifice number and diameter.

  • PDF

Research on the Injection Condition Calibration Process of a Common-rail DME Fueled Engine (4기통 커먼레일 DME 엔진의 분사조건 보정방법에 대한 연구)

  • Chung, Jae-Woo;Kang, Jung-Ho;Kim, Nam-Ho;Jeong, Soo-Jin;Lee, Ho-Gil;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.147-156
    • /
    • 2008
  • As the management of fuel efficiency becomes globally reinforced in attempts to find an environment-friendly vehicle that will operate against global warming, the interest in and the demand for the type of vehicle with a high-efficiency diesel engine using light oil. However, it also emits a greater amount of PM (particulate matter) and NOx than emissions from vehicles using other types of fuels. Therefore, the DME (Dimethyl Ether), an oxygen containing fuel draws attention as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But to develop and compare performance of an electric controlled common-rail DME engine, engine tests requires optimized injection conditions at required engine RPM and engine torque. These injection conditions cannot be set freely and the data configuration through the experimentally repeated application requires much time as well as a significant amount of errors and effort. The object of this study is to configure the basic injection map using the results of the DME engine experiments performed so far. For this, in this study, the functionalization of the required equations were performed along with the basic review of the factors that had influence on the data map. Through this, the information on the injection pressure, injection amount, injection duration, injection timing, etc. under certain operation condition could be obtained.