• 제목/요약/키워드: Fuel Injection System

검색결과 747건 처리시간 0.03초

초고압 커먼레일 연료분사튜브 원재료 강성 최적화를 위한 인발 공정에서의 Die와 Plug 각도 변경에 따른 해석적 연구 (An Analytical Study by Variation of Die and Plug Angle in Drawing Process for the Strength Optimization of Ultra High Pressure Common Rail Fuel Injection Tube Raw Material)

  • 안서연;박정권;김용겸;원종필;김현수;강인산
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.338-344
    • /
    • 2016
  • The study is actively being performed to increase fuel injection pressure of common rail system among countermeasures to meet the emission regulation strengthen of the Diesel engine. The common rail fuel injection tube in such ultra high pressure common rail system has the weakest structural characteristics against vibration that is generated by fuel injection pressure and pulsation during engine operation and driving. Thus the extreme durability is required for common rail fuel injection tube, and the drawing process is being magnified as the most important technical fact for strength of seamless pipe that is the raw material of common rail tube. In this respect, we analyzed the characteristic of dimension and stress variation of the ultra high pressure common rail fuel injection tube by variation of Die and Plug angle in drawing process. Based on the analysis, we tried to obtain the raw material strength of common rail fuel injection tube for applying to the ultra high pressure common rail system. As a result, Plug angle is more important than entry angle of Die and we could obtain the target dimension and strength of the ultra high pressure common rail fuel injection tube through optimization of Plug angle.

V8형 디젤엔진의 성능에 미치는 분사계의 영향에 관한 연구 (A Study on Effects of Fuel Injection System on the Performance in a V8-Type Diesel Engine)

  • 박병학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.248-256
    • /
    • 1998
  • The effects of fuel injection system on the performance in a V8-type diesel engine was stuided in this paper. Fuel injection system is important factor which influence the engine performance and exhaust emission bcasuse the properties in the injected fuel depend on the atomization characteristics. In this study using diesel engine of 17.7:1 compression ration the engine performance and exhaust emission are measured experimentally according to 1000, 1400, 2200rpm in the full-load conditions. The chosen parameters for the major system are such diameter shape of combustion chamber and intake system. The results are as follows: As the nozzle hole diameter and injection angle become smaller and as the injection timing gets advanced the fuel consumption and concentration of smoke are decreasing whereas concentration of $NO_{x}$ is increasing. Andconcentration of $NO_{x}$ is increasing in accordance with the increase of injection pipe diameter and nozzle protrusion. Also it is shown that re-entrant type combustion chamber is more effective than that of toroidal type in the improvement of $NO_{x}$ reduction.

  • PDF

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 NOx와 Soot 동시 저감에 관한 연구 (제2보 : 층상분사 연소특성 및 배기 특성) (A Study on the Simultaneous Reduction of NOx and Soot with Diesel-Methanol Stratified Injection System in a Diesel Engine (Part II : Combustion and Exhaust Characteristics of Stratified Injection))

  • 강병무;이태원;정성식;하종률
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.7-13
    • /
    • 2002
  • This paper is study on simultaneous reduction of NOx and soot for direct injection diesel engine using high and low cetane fuels. The stratified injection system was applied for diesel engine to use high and low cetane fuel. In this study, diesel fuel was used as high cetane fuels, methanol was used as low cetane fuels. Some parts of the injection system, ie. Nozzle holder. delivery vale, was remodeled to inject dual fuel sequentially from one injector. The leak injection quantity ratio of dual fuel was certificated by volumetric ratio at injection quantity experiment. According as concentration of low cetane fuel was varied, combustion experiment was performed using Toroidal and Complex chamber. Also, exhaust gas and fuel consumption were measured at the same time. Simultaneous reduction of NOx and soot was achieved at complex chamber regardless of concentration of low cetane fuel. However, according as concentration of low cetane fuel was increased, THC and CO was increased.

  • PDF

바이패스 방식 피에조 인젝터의 피에조 적층 및 인가전압에 따른 연료분사 특성 연구 (A Study on Injection Characteristics of Piezo Injector with Bypass by Various Piezo Stack and Applied Voltage)

  • 조인수;김우택;이진욱
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In the common rail fuel injection system, which is the core of diesel high efficiency and NOX reduction, injection strategies such as high pressure injection of fuel, accurate injection rate control, and multistage injection are important to increase fuel atomization. In this study, the bypass type piezo injector for the electronic control based common rail injection system applied to diesel fuel vehicle was studied. In particular, the injection rate and internal fuel flow characteristics of the high-pressure injector according to the piezo stacking number and applied voltage were analyzed by theoretical numerical method. When the applied voltage changes, it is determined that additional fuel flow through the bypass compensates for the reduced valve driving force due to the change in the driving voltage.

전자유압식 분사계를 갖는 D.I. 디젤기관의 분사 및 연소에 관한 연구 (A Study on Injection and Combustion of D.I. Diesel Engine with Electronic-hydraulic Fuel Injection System)

  • 김현구;라진홍;안수길
    • 수산해양교육연구
    • /
    • 제9권1호
    • /
    • pp.83-97
    • /
    • 1997
  • Diesel engine is widely used for ship and industry source of power because of its high thermal efficiency and reliability and durability. However it lead to air pollution due to exhaust gas, and it is important to develop diesel engine of lower air-pollution to decrease the hazardous exhaust gas emissions. As one of the ways, the study for practically using the high pressure of fuel injection and variable injection timing system is being processing. The high pressure injection, which is said to be an effective means for reducing both NOx and particulate emissions, and great improvements in combustion characteristics have been reported by many researchers. In this study, electronic-hydraulic fuel injection system and hydraulic fuel injector system have been applied to the D.I. test engine for high pressure injection and variable injection timing. The injection pressure and injection rate depending upon accumulator pressure were measured with strain gage and Bosch injection rate measuring system before fitting the system into test engine, and analyzed the characteristics of the injection system. The combustion characteristics with this injection system has been analyzed with data concerning heat release rate, pressure rising rate, ignition point, ignition delay and maximum pressure value.

  • PDF

A Comprehensive Study on Fuel Injector Test Bench for Heavy Duty Engine

  • Das, Shubhra Kanti;Thongchai, Sakda;Lim, Ocktaeck
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.195-201
    • /
    • 2015
  • This study discusses a fuel injector test bench containing a mechanical type fuel supply system for heavy duty diesel engine. The main focus of this study was to evaluate the design stability of the test bench, which basically measures the injector durability of a multi-hole heavy duty injector by using pure diesel as a test fuel. In this experiment, diesel spray was controlled by a specially designed control box and all the experiments were carried out to measure e.g. fuel injection pressure and fuel injection quantity to understand the injection status which is interlinked with the stability factor of total test bench design. Also, the durability test was performed to understand the heavy duty operation lastingness of the designed system and the flow rate of the installed distributor pump in the fuel supply system of this studying test bench was compared with LO-1 and LO-2 pump. The results of the above mention tests revealed that the injector test bench design and control system can serve the purpose for heavy duty injector.

가솔린 직접 분사식 엔진에서 연료 분사 압력 증가에 따른 연소 및 배기 배출물 특성 (The Combustion and Emission Characteristics with Increased Fuel Injection Pressure in a Gasoline Direct Injection Engine)

  • 이준순;이용규
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Recently, Performance and fuel efficiency of gasoline engines have been improved by adopting direct injection (DI) system instead of port fuel injection (PFI) system. However, injecting gasoline fuel directly into the cylinder significantly reduces the time available for mixing and evaporation. Consequently, particulate matters(PM) emissions increase. Moreover, as the emission regulations are getting more stringent, not only the mass but also the total number of PM should be reduced to satisfy the Euro VI regulations. Increasing the fuel injection pressure is one of the methods to meet this challenge. In this study, the effects of increased fuel injection pressures on combustion and emission characteristics were experimentally examined at several part load conditions in a 1.6 liter commercial gasoline direct injection engine. The main combustion durations decreased about $2{\sim}3^{\circ}$ in crank angle base by increasing the fuel injection pressure due to enhanced air-fuel mixing characteristics. The exhaust emissions and number concentration distributions of PM with particle sizes were also compared. Due to enhanced combustion characteristics, THC emissions decreased, whereas NOx emissions increased. Also, the number concentrations of PM, larger than 10 nm, also significantly decreased.

디젤기관 연료분사 시스템의 분사 특성에 관한 연구 (A study on the injection charateristics of the fuel injection system in a diesel engine)

  • 이창식;김정헌
    • 오토저널
    • /
    • 제14권5호
    • /
    • pp.54-60
    • /
    • 1992
  • This paper deals with the results of injection characteristics and the influence parameters upon the fuel injection performance of the inline injection system in a diesel engine. In this study, the characteristics of the injection rate, the injection pressure and the injection duration have been investigated by changing the injection parameters. The predicted results and injection performance are compared to the measured data from the injection test system.

  • PDF

소형 고속 전자제어 연료분사 엔진 개발에 관한 연구 (Study on Development of High-Speed Small Engine Controlled by EFI (Electronic Fuel Injection))

  • 이승진;류정인;최교남;정동수
    • 에너지공학
    • /
    • 제14권3호
    • /
    • pp.173-179
    • /
    • 2005
  • 소형고속엔진에서 연료분사 시스템은 기화기시스템 보다 출력, 연료소비율, 배기가스 등에서 향상된 결과를 가져온다. 최근에 국내에서 연료분사시스템은 차량에 사용되지만 이륜차에서는 사용되지는 않는다. 엔진에서 EFI(전자식연료분사)시스템은 변화하는 회전수에 따라 ECU 에서 정확한 연료를 공급할 수 있다. 본 연구의 목적은 이륜차에 사용되는 4valve SOHC 단기통 소형엔진에서 다양한 회전수에 맞는 엔진성능과 효율을 개선하기 위해 회전수별 연료분사효과를 고찰하였다.

정적연소기에서 분위기 압력에 따른 Diesel-DME 혼합연료의 분무 특성에 관한 연구 (An Investigation on the Spray Characteristics of Diesel-DME Blended Fuel with Variation of Ambient Pressure in the Constant Volume Combustion Chamber)

  • 양지웅;이세준;임옥택
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.178-184
    • /
    • 2012
  • The aim of this study was to compare the spray characteristics of a typical fuel (100% diesel, DME) and diesel-DME blended fuel in a constant volume combustion chamber (CVCC). The typical fuel (100% diesel, DME) and diesel-DME blended fuel spray characteristics were investigated at various ambient pressures (pressurized nitrogen) and fuel injection pressures using a common rail fuel injection system when the fuel mixture ratio was varied. The fuel injection quantity and spray characteristics were measured including spray shape, penetration length, and spray angle. Common types of injectors were used.