• 제목/요약/키워드: Fuel Injection Ratio

검색결과 410건 처리시간 0.022초

포트 마스킹이 엔진의 부분부하 성능에 미치는 영향: Part II - 배기 및 연비특성 (Effects of Port Masking on fart Load Performance: Part II - Emission and Fuel Economy)

  • 이원근;엄인용
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.23-29
    • /
    • 2001
  • This paper is the second of companion papers, which investigate port-masking effects on emission and fuel economy. Port-masking was applied to commercial SOHC 3-valve engine by inserting masking plates between manifold and port. To induce various conditions of stratification, six types of masking plates were applied. In this paper, main interest is focused on the influence of injection timing on emission and fuel economy. Various injection timing was applied to the six cases, under the stoichiometric and lean-limit air-fuel ratio. Under the stoichiometric condition, an explanation about the reason of the change in emission level due to injection timing change is given. It is observed that NOx emission under the LML condition varies significantly when the injection timing changes.

  • PDF

Mach 6 Tests of Scramjet Engine with Boundary-Layer Bleeding and Two-Staged Injection

  • Kodera, Masatoshi;Tomioka, Sadatake;Kobayashi, Kan;Kanda, Takeshi;Mitani, Tohru
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.26-33
    • /
    • 2004
  • In this study, a boundary-layer bleeding and a two-staged fuel injection were applied to a scramjet engine for suppressing unstart transition and improving the thrust performance under Mach 6 flight conditions. With the boundary-layer bleeding, the engine could operate without unstart transition around at the fuel equivalence ratio of unity ($\Phi$ = 1). The thrust increment from the no fuel condition (dF) increased to 2460 N, which was about 1.4 times as large as that of the case without the bleeding and maximum in our Mach 6 tests. It was confirmed that the boundary-layer bleeding suppressed the separation during the engine operation. The two-staged fuel injection was less effective for improving the thrust performance com-pared with the single-staged one with the bleeding at Mach 6.

  • PDF

디젤기관의 연료소비율 및 질소산화물 배출물에 미치는 EGR의 영향에 관한 연구 (A Study on Effect of EGR upon Fuel Consumption Rate and NOx Emission in Diesel Engines)

  • 배명환;임재근
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.76-88
    • /
    • 1995
  • The effects of exhaust gas recirculation(EGR) on the characteristics of NOx emissions and specific fuel consumption rate have been investigated using an eight-cylinder. four cycle. direct injection diesel engine operating at several loads and speeds. The theoretical NO formation concentration is calculated with the equivalence ratio as a parameter of flame temperature to study the effect of EGR on NOx emissions in the diesel combustion. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. It is found that the specific fuel consumption rate is slightly increased with EGR rate. and NOx emissions are markedly reduced owing to the drop of the incoming oxygen concentratio and the increase of equivalence ratio as the EGR rate increases.

  • PDF

분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석 (Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio.)

  • 정훈;차경세;박찬국
    • 한국전산유체공학회지
    • /
    • 제5권3호
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

가솔린 기관 공연비 제어를 위한 흡기포트 내의 연료액막 모델링 (Modeling of Liquid Fuel Behavior to Control Air/Fuel Ratio in the Intake Port of SI Engines)

  • 조훈;민경덕;황승환;이종화
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.512-518
    • /
    • 2000
  • A wall fuel-film flow model is developed to predict the effect of a wall-fuel-film on air-fuel ratio in an SI engine in transient conditions. Fuel redistribution in the intake port resulting from charge backflow and a simple liquid fuel behavior in the cylinder are included in this model. Liquid fuel film flow is calculated of every crank angle degree using the instantaneous air flow rate. The model is validated by comparing the calculated results and corresponding engine experiment results of a commercial 4 cylinder DOHC engine. The predicted results match well with the experimental results. To maintain the constant air-fuel ratio during transient operation. the fuel injection rate control can be obtained from the simulation result.

가솔린기관의 시동시 기관 제어변수가 배기가스온도 및 시동성에 미치는 영향에 관한 실험적 연구 (Effects of Engine Control Variables on Exhaust Gas Temperature and Stability during Cranking Operation of an SI Engine)

  • 조용석;안재원;박영준;김득상;이성욱
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.64-70
    • /
    • 2007
  • Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.

직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구 (A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine)

  • 인병덕;박상기;이기형
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.

바이오연료의 디젤엔진 적용에 관한 실험연구 (An Experimental Study on Application of Biofuel to Diesel Engine)

  • 염정국;하형수
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.29-37
    • /
    • 2013
  • Compared to gasoline engines, diesel engines with a relatively simple ignition system are more advantageous in the application of biodeisel fuel to engine. Then in this study the comparative analysis on the spray characteristics and combustion emissions characteristic between the biodiesel(soybean oil) and diesel, the fuel for commercial diesel engine, was performed with common rail injection system. Injection pressure and ratio of biodiesel blended fuel were selected as main experimental variables. Consequently, it can be found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of soybean oil and diesel at a fixed injection pressure, in particular, soot creation in combustion emissions in the region of low pressure was greatly affected by the blend ratio of soybean oil, however, the creation in the region of high pressure was almost unaffected by the blend ratio because of promoted atomization.

노즐 오리피스 형상 및 형상비가 디젤과 바이오디젤 연료의 노즐 내부 및 외부 유동특성에 미치는 영향 (Effect of Nozzle Orifice Shape and Nozzle Length-to-Diameter Ratio on Internal and External Flow Characteristics of Diesel and Biodiesel Fuel)

  • 박수한;서현규;이창식
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.264-272
    • /
    • 2007
  • The aim of this study is to investigate the effects of nozzle orifice shapes and the nozzle length-to-diameter ratio(L/D) on the nozzle cavitation formation inside the orifice and the external flow pattern. The nozzle used in this work was tested the taper orifice nozzle and the rectangular orifice nozzle which was made from the transparent acrylic acid resin. For studying the effect of the nozzle L/D ratio, it was used to three L/D ratios of 3.33, 10, and 20. The cavitation flow of nozzle was visualized by using the ICCD camera and optical system. This work revealed that the flow rate and discharge coefficient($C_d$) of the taper orifice nozzle was larger than those of the rectangular orifice nozzle at the same injection pressure. The cavitation flow was observed in the nozzle orifice at the low injection pressure and the breakup of liquid jet was promoted as the L/D ratio is decreased. The cavitation of biodiesel fuel was formed at the lower injection pressure than that of diesel fuel because of higher viscosity and density.

스팀분사를 고려한 SOFC/GT 하이브리드 시스템의 설계 성능 비교 분석 (Design Performance Analysis of Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Steam Injection)

  • 박성구;김동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3224-3229
    • /
    • 2007
  • This study aims to analyse the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. The steam is generated by recovering heat from the exhaust gas. Two system configurations, with difference being the operating pressure of the SOFC, are examined and effects of steam injection on performances of the two systems are compared. Two representative gas turbine pressure ratios are simulated and a wide range of both the fuel cell temperature and the turbine inlet temperature is examined. Without steam injection, the pressurized system generally exhibits better system efficiency than the ambient pressure system. Steam injection increases system power capacity for all design cases. However, its effect on system efficiency varies much depending on design conditions. The pressurized system hardly takes advantage of the steam injection in terms of the system efficiency. On the other hand, steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. A higher pressure ratio provides a better chance of efficiency increase due to steam injection.

  • PDF