• Title/Summary/Keyword: Fuel Injection Ratio

Search Result 410, Processing Time 0.017 seconds

Various Injection Conditions and Fuel Control of an LPG Liquid Injection Engine (다양한 분사조건과 LPG 액상분사엔진의 연료량 제어)

  • Sim Hansub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • Fuel injection rate of an injector is affected by various injection conditions such as injection duration, fuel temperature, injection pressure, and voltage in LPG liquid injection systems for either a port-fuel-injection(PFI) or a direct injection(DI) in a cylinder. Even fuel injection conditions are changed, the air-fuel ratio should be accurately controlled to educe exhaust emissions. In this study, correction factor for the fuel injection rate of an injector is derived from the density ratio and the pressure difference ratio. A voltage correction factor is researched from injection test results on an LPG liquid injection engine. A compensation method of the fuel injection rate is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI-engine show that this system works well on experimental range of engine speed and load conditions. And the fuel injection rate is accurately controlled by the proposed compensation method.

A Fundamental Study of Air-Fuel Ratio Control on LPG Liquid Injection Engines (LPG 액체분사엔진의 공연비제어에 관한 기초 연구)

  • Sim, Han-Seop;Sunwoo, Myoungho;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.80-87
    • /
    • 2002
  • Liquefied petroleum gas (LPG) is used in spark ignition (SI) engines. Fuel injection rate of an injector is affected by fuel temperature and pressure in LPG liquid injection systems for either a multi-point-injection (MPI) or a direct injection (DI) engine. Even fuel injection conditions are varied, the air-fuel ratio should be accurately controlled to reduce exhaust emissions. In this study, a correction factor fur the fuel injection rate of an injector is derived from density ratio and pressure difference ratio. A compensation method of injected fuel amount is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI engine show that this system works well fur a full range of engine speed and load condition, and the air-fuel ratio is accurately controlled by the proposed correction factor.

An Experimental Investigation on Spray Behavior of Biodiesel and DME on Blended Ratio in High Temperature and Pressure Ambient Conditions (고온 고압 분위기 조건에서 바이오 디젤과 DME의 혼합비에 따른 분무특성에 관한 연구)

  • Bang, Seung-Hwan;Chon, Mun-Soo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • The objective of this work is to analyze the macroscopic behavior of spray and injection characteristics on the DME blended biodiesel at different mixing ratios by using spray visualization and injection rate measurement system. The spray images were analyzed to a spray tip penetration, a spray cone angle and a spray area distribution at various mixing ratio of DME by weight. The influence of different injection pressure and ambient pressure on the fuel spray characteristics are investigated for the various injection parameters. In order to analyze the injection characteristics of test fuels, the fuel injection rate is measured at various blending ratio. The variation of viscosity of the blended fuel by the mixing of DME fuel shows the improved effect of spray developments. Also, it was found that the injection quantities of high blended ratio were larger than that of lower blended fuel. Also, higher blending fuel showed a faster evaporation than that of mixing ratio of test fuel because kinetic viscosity was changed by blending ratio.

Injector Control Logic for a Liquid Phase LPG Injection Engine (액상 LPG 분사 엔진의 인젝터 제어 로직)

  • 조성우;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.15-21
    • /
    • 2003
  • The liquid phase LPG injection engine is a new technology to make good use of LPG as a clean energy. However, it is difficult to precisely control air/fuel ratio in the system because of variation of fuel composition, change of temperature and flash boiling injection mechanism. This study newly suggests an injector control logic for liquid phase LPG injection systems. This logic compensates a number of effects such as variations of density, stoichiometric air/fuel ratio, injection delay time, injection pressure, release pressure which is formed by flash boiling of fuel at nozzle exit. This logic can precisely control air/fuel ratio with only two parameters of intake air flow rate and injection pressure without considering fuel composition, fuel temperature.

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.

A Study on the Effect of Fuel Injection System on D. I. Diesel Engine (직접분사식 디젤기관의 성능에 미치는 연료 분사계의 영향에 관한 연구)

  • 윤천한;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozzle hole, diameters of an injection pipe, and injection timing in the fuel injection system. We have obtained the results that the fuel consumption ratio is reduced and NOx concentration is increased as the smaller diameter of injection nozz1e hole, the smaller diameter of injection pipe, and more advanced injection timing. They show that optimizing the factors of fuel injection system is significant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

A Study on Mixture Preparation in a Port Fuel Injection Sl Engine During Engine Starting (흡기포트 분사방식의 가솔린 엔진에서 냉시동시 혼합기 형성에 관한 연구)

  • 황승환;이종화;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.15-22
    • /
    • 2002
  • As the emission regulations on the automobiles have been increasingly stringent, precise control of air/fuel ration is one of the most important issues on the gasoline engines. Although many researches have been carried out to identify the fuel transport phenomena in the port fuel injection gasolines, mixture preparation in the cylinder has not been fully understood due to the complexity of fuel film behavior, In this paper, the mixture preparation during cold engine start is studied by using a Fast Response Flame ionization Detector.(FRFID) In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient($\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-in. $\alpha$( ratio of directly inducted fuel mass into cylinder from injected fuel mass) and $\beta$ (ratio of indirectly inducted fuel mass into cylinder from wall wetted fuel film on the wall) was increased with increasing cooling water temperature. To reduce a air/fuel ratio fluctuation during cold engine start, the appropriate fuel injection rate was obtained from the wall wetting fuel model. Result of air/fuel ratio control, air/fuel excursion was reduced.

Construction of Map for Transient Condition of a Sl Engine and Refinement of Intake Air Model & Fuel Model (가솔린 엔진의 비정상 상태에 대한 Map 구성과 공기 및 연료 모델 개선)

  • 심연섭;강태성;강승표;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • For gasoline engines, a three-way catalytic converter that has the maximum efficiency at stoichiometric air/fuel ratio is used to clean up the exhaust gas. So a precise air/fuel ratio control is necessary to maximize the catalytic conversion efficiency, For a transient condition, a fred-forward air/fuel ratio control method that estimates the air mass inducted into a cylinder is being used. In this study, a fuel injection map that makes an accurate air/fuel ratio control possible was constructed for the very same transient condition. For the same condition above, intake air model and fuel model were refined so that fuel injection values based on air mass through a throttle valve and intake manifold pressure are equal to the map values.

Effects of Pilot Injection Method Following the Main Injection on Ignition Promotion and Exhaust Gas Reduction in a Diesel-Fueled HCCI Engine (디젤 예혼합압축착화엔진에서 주연료 분사 후 점화 연료 분사 방법을 통한 점화 촉진과 배기가스 개선 효과)

  • Kook, Sang-Hoon;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.27-32
    • /
    • 2003
  • Diesel-Fueled HCCI(Homogeneous Charge Compression Ignition) Engine is an advanced combustion process explained as a premixed charge of diesel fuel and air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Also PM could be reduced by the premixed combustion and no fuel-rich zones. But HCCI couldn't be realized because of the difficulties in vaporizing the diesel, control of combustion phase directly. To solve these problems, new fuel injection strategy, explained as the pilot fuel injection to promote ignition near TDC following the main fuel injection at the extremely advanced timing, is applied during the compression ratio is varied from 18.9:1 to 27.7:1 This is not a pilot fuel to promote the ignition but also the direct control method of the combustion phase. Experimental result shows the pilot fuel injection promote the ignition and the compression ignition of the HCCI engine is achieved as compression ratio becomes higher. Also there is an optimal pilot fuel injection timing for the HCCI combustion. NOx is reduced more than 90% compared to DI-Diesel case but PM and THC emission needs more investigation.

  • PDF