• Title/Summary/Keyword: Fuel Electrode Catalyst

Search Result 165, Processing Time 0.03 seconds

Degradation Evaluation of PEM Water Electrolysis by Method of Degradation Analysis Used in PEMFC (고분자전해질 연료전지 열화 분석방법에 의한 PEM 수전해 열화 평가)

  • Oh, Sohyeong;Yang, Jinwon;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • The PEM(Proton Exchange Membrane)water electrolysis uses the same PEM electrolyte membrane as the PEM fuel cell and proceeds by the same reaction but the opposite direction. The PEM fuel cell has many methods of degradation analysis since many studies have been conducted on the degradation and durability of the membrane and catalyst. We examined whether PEM fuel cell durability evaluation method can be applied to PEM electrolytic durability evaluation. During the PEM electrolytic degradation process, LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope) and FT-IR(Fourier Transform Infrared spectroscopy) were analyzed and compared under the same conditions as the PEM fuel cell. As the PEM fuel cell, hydrogen passing through the membrane was oxidized at the Pt/C electrode, and the hydrogen permeation current density was measured to analyze the degree of degradation of the PEM membrane. Electrode degradation could be analyzed by measuring the electrode active area (ECSA) by CV under hydrogen/nitrogen flowing conditions. While supplying hydrogen and air to the Pt/C electrode and the IrO2 electrode, the impedance of each electrode was measured to evaluate the durability of the electrode and membrane.

Evaluation of Cell Components in Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 구성요소 평가에 대한 연구)

  • Jung, Won Suk;Yoon, Sung Pil;Han, Jonghee;Nam, Suk Woo;Lim, Tae-Hoon;Oh, In-Hwan;Hong, Seong-Ahn
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.362-367
    • /
    • 2009
  • Recently, the use of formic acid as a fuel for direct liquid fuel cells has emerged as a promising alternative to methanol. In the work presented herein, we evaluated direct formic acid fuel cells(DFAFCs) with various components under operating conditions, for example, the thickness of the proton exchange membrane, concentration of formic acid, gas diffusion layer, and commercial catalyst. The thickness of the proton exchange membrane influenced performance related to the fuel cross-over. To optimize the cell performance, we investigated on the proper concentration of formic acid and catalyst for the formic acid oxidation. Consequently, membrance-electrode assembly(MEA) consisted of $Nafion^{(R)}$-115 and the Pt-Ru black as a anode catalyst showed the maximum performance. This performance was superior to the DMFCs' one.

Development of Air Cutoff Valve for Improving Durability of Fuel Cell (연료전지 내구성능 향상을 위한 공기차단밸브 개발)

  • Park, Jeonghee;Lee, Changha;Kwon, Hyuckryul;Kim, Chimyung;Choi, Kyusung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • In this study, among in various scenarios of the duration degradation of the fuel cell, countermeasures for the cathode carbon carrier oxidation and the deactivation of catalyst by hydrogen / air interface formation have been studied. so the system was applied to the air cutoff valve. In terms of the component, the cold start performance, electrical stability, the airtight performance were mainly designed and their performance was confirmed. And in terms of the system, the air electrode flow is blocked off, so the oxygen concentration drops when system is powered off, As a result, By reducing unit cell voltage which affect the durability of the fuel cell reached up to 0.8V, the improved durability of the fuel cell was confirmed.

Electricity Generations in Submerged-flat and Stand-flat MFC Stacks according to Electrode Connection (침지 및 직립 평판형 MFC 스택에서 전극연결 방식에 따른 전기발생량 비교)

  • Yu, Jaecheul;Park, Younghyun;Lee, Taeho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.589-593
    • /
    • 2016
  • Microbial fuel cell (MFC) can produce electricity from oxidation-reduction of organic and inorganic matters by electrochemically active bacteria as catalyst. Stacked MFCs have been investigated for overcoming low electricity generation of single MFC. In this study, two-typed stacked-MFCs (submerged-flat and stand-falt) were operated according to electrode connection for optimal stacked technology of MFC. In case of submerged-flat MFC with all separator electrode assembly (SEA) sharing anode chamber, MFC with mixed-connection showed more voltage loss than MFC with single-connection method. And MFC stacked in parallel showed better voltage production than MFC stacked in series. In case of stand-flat MFC, voltage loss was bigger when SEAs sharing anodic chamber only were connected in series. Voltage loss was decreased when SEAs parallel connected SEAs sharing anodic chamber were connected in series.

Application of CV Cycling to the Activation of the Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 연료전지의 활성화를 위한 CV 활성화법)

  • Cho, Ki-Yun;Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-449
    • /
    • 2012
  • The activation process of the membrane-electrode assembly (MEA) is important for the mass production of the polymer electrolyte membrane fuel cell. The conventional activation process for the MEA requires excessive time and hydrogen gas and it might become the barrier for the commercialization of the fuel cell. The conventional activation process is based on hydrolysis of ion conducting membrane. In the study, we suggest the cyclic voltammetry (CV) technique as an on-line activation process and the CV activation process consists of two steps : 1) the humidification of the polymer electrolyte membrane and the electrode with 100% RH humidified nitrogen ($N_{2}$) gas, and 2) the removal step of the oxide layer on the surface of the Pt catalyst with CV cycling. The cycling reduces the activation time of the MEA by 2.5 h and use of hydrogen gas by 1/4.

Performance Charateristics of Direct Borohydrides Fuel Cell with Novel Catalyst (귀금속 촉매를 사용한 직접 보로하이드라이드 연료전지의 특성 연구)

  • Jung, M.K.;Shin, D.R.;Seol, Y.K.;Jung, D.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • Direct borohydrides fuel cell (DBFC) was emerged to complement the problem of DMFC's low performance and methanol crossover to the cathode and to apply the fuel cell to portable and mobile devices. In this study, the characteristics of novel catalysts was tested to establish the electrode preparation process of DBFC. Pt black and carbon supported-Pt by paste method were used as the cathode catalysts. Pt black, carbon supported-Au and $AB_5$ alloy were used as the anode catalysts. The characteristics of the electrodes were analyzed by XRD, SEM, EDS. The performance test of single cell using the electrodes were carried out in order to evaluate the electrode performance. In the result, the maximum power output was obtained as 366 mW/mg when using Pt/C as anode and cathode catalysts.

A Performance characteristics of Pt/C Electrode prepared by Hot Pressing Method (Hot Pressing법에 의해 제조된 Pt/C 전극의 성능특성)

  • 김진수;서동우;설용건;이태희
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.58-65
    • /
    • 1992
  • Pt loaded porous carbon Pt/C electrode was prepared by hot pressing process to enhance the electrode performance in PAFC (phosphoric acid fuel cell). By changing the hot pressing conditions and PTFE contents, Pt/C electrodes were prepared and the electrochemical characteristics of oxygen reduction and unit-cell performance were evaluated. The optimum condition of hot press to make electrode is 360$^{\circ}C$ and 10 kg/$\textrm{cm}^2$. Maximum performance was obtained at 30 wt% PTFE content in the catalyst layer with 80% utilization of platinum clusters. Unit-cell performance of hot pressed Pt/C electrode was 200 mA/$\textrm{cm}^2$ at 700 ㎷ and stable performance was maintained more than 200 hr.

  • PDF

Application of Micro Porous Layer (MPL) for Enhance of Electrode Performance in Phosphoric Acid Fuel Cells (PAFCs) (인산형 연료전지(PAFC)의 전극 성능 향상을 위한 미세다공층(MPL)의 적용)

  • Jihun Ha;Sungmin Kang;You-Kwan Oh;Dong-Hyun Peck
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • The key components of a Phosphoric acid fuel cell (PAFC) are an electrode catalyst, an electrolyte matrix and a gas diffusion layer (GDL). In this study, we introduced a microporous layer on the GDL of PAFC to enhance liquid electrolyte management and overall electrochemical performance of PAFC. MPL is primarily used in polymer electrolyte membrane fuel cells to serve as an intermediate buffer layer, effectively managing water within the electrode and reducing contact resistance. In this study, electrodes were fabricated using GDLs with and without MPL to examine the influence of MPL on the performance of PAFC. Internal resistance and polarization curves of the unit cell were measured and compared to each other to assess the impact of MPL on PAFC electrode performance. As the results, the application of MPL improved power density from 170.2 to 192.1 mW/cm2. MPL effectively managed electrolyte and water within the matrix and electrode, enhancing stability. Furthermore, the application of MPL reduced internal resistance in the electrode, resulting in sustained and stable performance even during long-term operation.

Electricity Generation by Microbial Fuel Cell Using Microorganisms as Catalyst in Cathode

  • Jang, Jae Kyung;Kan, Jinjun;Bretschger, Orianna;Gorby, Yuri A.;Hsu, Lewis;Kim, Byung Hong;Nealson, Kenneth H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1765-1773
    • /
    • 2013
  • The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were $2.3{\pm}0.1$ and $2.6{\pm}0.2mA$, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode ($430W/m^3$ cathode compartment) than the abiotic cathode MFC ($257W/m^3$ cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron-consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.