• Title/Summary/Keyword: Fuel Droplet

Search Result 360, Processing Time 0.024 seconds

Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve (스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성)

  • Lee, Min-Ho;Moon, Hak-Hoon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF

Pulverized Coal Particle Presence Inside CWM Droplet (CWM 방울안의 미분탄 존재)

  • 김종호;김성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1211-1221
    • /
    • 1990
  • The purpose of this study is to get experimental data on the distribution of CWM (Coal- Water Mixture) droplets size and the presence of pulverized coal particles inside CWM droplets. Atomization of CWM is done by Twin-Fluid Atomizer. The operational parameters are atomizing air pressure, coal particle loading, mean size of pulverized coal particles and sampling positions across spray. Th data analysis is initiated by Impression Sampling Method(Magnesium Oxide Technique) and Photo-technique and counting works are followed. Experimental work induces following research results. The variation of particle loadings in slurry makes no appreciable effects on the mean size of CWM droplets. It is evident that atomizing air pressure has very strong effect on the atomization of slurry. The mean size of atomized fuel droplets is dramatically reduced with the increasing air pressure. The population ratio of droplets without coal particles to total number of droplets is decreased as atomizing air pressure or loading rises and the same trend is obtained as the mean size of coal particles becomes smaller but a certain tendency of coal particle presence inside droplets could not be found from the change of sampling positions.

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

A Feasibility Study on the Polymer Solidification of Evaporator Concentrated Wastes (폐액증발기 농축폐액 폴리머고화 타당성 연구)

  • Yang, Ho-Yeon;Kim, Ju-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.297-308
    • /
    • 2007
  • The granulation equipment of concentrated wastes is manufactured for the polymer solidification of concentrated wastes. It uses liquid sodium silicate as a granulating agent for the granulating of dried powder containing boric acid. The granulating agent is sprayed in the form of droplet and mean size of dried granules is $2{\sim}4mm$. The new technology which has been used for the polymer solidification of spent resin in U.S. and certified by Nuclear Regulatory Commission (NRC) is successfully applied to concentrated wastes. This uses in-situ solidification process within drum without mechanical mixing. Maximum loading of waste can be achieved without increasing of waste volume. Polymer waste forms were evaluated with several test such as fire test, compressive strength test, leaching test, immersion test, irradiation test, and thermal cycling test according to standard test procedures.

  • PDF

Spray Characteristics of the Oxidizer-rich Preburner Injector in High Pressure Environments (로켓 산화제 과잉 예연소기용 분사기의 고압 분무특성 연구)

  • Yang, Joon-Ho;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.48-56
    • /
    • 2008
  • In the rocket preburner, oxidizer-rich combustion with liquid oxygen and kerosene is very challenging work. The key factor of stable flame is good mixing and that is controlled by the injector performance. We have studied spray characteristics of the oxidizer-rich rocket preburner injector in high pressure environments. The injector is composed of fuel orifices, oxidizer orifices and cooling skirt with liquid oxygen. By using this apparatus, we have taken photographs and measured Sauter mean diameter with changing ambient pressure from 0 to 30 kgf/cm2[g]. Droplet diameter is measured by the image processing technique. From the test results, we could understand spray characteristics of the oxidizer-rich preburner injector and this result could be applied to the development of the oxidizer rich preburner system.

Gasification of Coal-Petroleum Coke-Water Slurry in a 1 ton/d Entrained Flow Gasifier (1톤/일 분류층가스화기에서 석탄과 석유코크스 혼합 슬러리의 가스화특성)

  • Yoon, Sang Jun;Choi, Young-Chan;Hong, Jai-Chang;Ra, Ho Won;Lee, Jae Goo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.561-566
    • /
    • 2008
  • Gasification plant using petroleum coke for refinery and power generation process is increased from considering petroleum coke as a valuable fuel. In this study, gasification of petroleum coke was performed to utilize petroleum coke and to develop essential technology using 1T/D coal gasification system. In case of petroleum coke gasification, because of lower reactivity, consumption of oxygen is higher than coal gasification. The calorific value of syngas from petroleum coke mixed with coal at a mass ratio of 1:1 shows about $6.7{\sim}7.2MJ/Nm^3$. Although carbon conversion could reach more than 92% according to oxygen amount, cold gas efficiency shows lower value than the case of coal. Therefore, it was shown that complemental study in burner design to atomize slurry droplet is required to elevate gasification performance of petroleum coke which has lower reactivity than coal.

Recent Progress in Methods of Generating Water Mist for Fire Suppression

  • Guangxuan, Liao;Xin, Huang;Beihua, Cong;Jun, Qin;Jianghong, Liu;Xishi, Wang
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.251-265
    • /
    • 2006
  • To prevent the ozonosphere from being destroyed by Halon, it is an urgent task to find out Halon replacement. As one of the replacements water mist have showed broad applications by its advantages: little pollution to environment (not destroying the ozone layer or bring green house effect), extinguishing fire quickly, consuming a small quantity of water and having little damage to the protected objects. The methods of generating water mist strongly influence fire suppression effectiveness, which determine the cone angle, drop size distribution, flux uniformity, and momentum of the generating spray. The traditional water mist nozzle included pressure jet nozzles, impingement nozzles and twin-fluid nozzles. All of them have more or less disadvantages for fire suppression. Therefore, many research institutes and corporations are taking up with innovations in mist generation. This article provided some recent studies in State Key Laboratory of Fire Science (SKLFS) of University of Science and Technology of China. SKLFS have investigated new methods of generating water mist (i.e. effervescent atomization and ultrasonic atomization). and self developed a series of nozzles and developed advanced DPIVS (Digital Particle Image Velocimetry and Sizing) technique. Characteristics of water mist (the distribution of droplet sizes, flux density, spray dynamics and cone angle) produced by these nozzles were measured under different conditions (work pressure, nozzle geometry, etc.) using LDV/APV and DPTVS systems. A series of experiments were performed to study the fire suppression effectiveness in different fire scenario (different kindsof the fuel, fire size and ventilation conditions). The fire extinguishing mechanisms of water mist was also discussed.

  • PDF

Experimental study of extinguishment of the pure diffusion flame using water spray (수분무를 이용한 순수확산화염의 소화에 관한 실험적 연구)

  • Jang, Yong-Jae;Kim, Myeong-Bae;Kim, Jin-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.624-631
    • /
    • 1996
  • This study describes extinguishment mechanism of the purely buoyant diffusion flame using the water spray. Experiments are systematically carried out for the oul pool fire with the six different atomizing nozzles. From the measurement of burning rate which represents the combustion intensity of fire, it is observed that the water spray is able to act to enhance fire rather than to extinguish fire. The air entertainment due to the water spray is visualized to understand this phenomenon, acting to enhance fire. In order to observe effects of droplet size on fire extinguishment, and amount of water which reaches the flame base, fuel surface, and mean diameter of droplets are measured. When water droplets are too small, they do not reach the flame base because they can the water spray having too small doplets is ineffective for extinguishment of the oil fire.

Fabrication of Nano-sized ZnO Colloids from Spray Combustion Synthesis (SCS) (분무연소합성(SCS)법에 의한 나노크기 산화아연(ZnO) 콜로이드의 제조)

  • Lee, Sang-Jin;Lee, Sang-Won;Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.76-80
    • /
    • 2004
  • Nano-sized ZnO colloids were prepared by use of spray combustion method. for combustion reaction, $Zn(NO_3)_2{\cdot}6H_2O$ and $CH_6N_4O$ were employed as an oxidizer and a fuel. Exothermic peak was shown at $230^{\circ}C$ by DTA/TGA, and it was considered as a combustion reaction followed by ignition of the precursor mixture. In case of spray combustion method, because insufficient contents of molecules and radicals generated from precursor droplets may lead an incomplete igmition, the ignition temperature of combustion chamber was chosen at $500^{\circ}C$. For diminishing aerosol coagulation, the droplet number concentration was reduced by filter media. The fluid was laminar with 2.5 seconds of aerosol residence time. The synthesized colloids had spherical shape with 180 nanometer size, and the crystalline phase was ZnO with hexagonal structure.