• Title/Summary/Keyword: Fuel Consumption Estimation

Search Result 66, Processing Time 0.025 seconds

Analysis of Carbon Emissions and Land Use Change for Low -Carbon Urban Management - Focused on Jinju (저탄소 도시관리를 위한 탄소배출과 토지이용변화 분석 -진주시를 중심으로-)

  • Eo, Jae-Hoon;Kim, Ki-Tae;Jung, Gil-Sub;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.129-134
    • /
    • 2010
  • Low-carbon Green Growth is highlighted as the main political issue from in and outof Korea. Recently Korean government announced the vision for low-carbon green growth. Considering this as a starting point the carbon emission estimation has become an important factor in the city planning. In order to realize the carbon reduction planning, this research was focused on the trend analyzes between the carbon exhaust estimation as well as the land use change for the past 40 years in Jinju. The image processing data of past aerial photography and the land suitability assessment databases were used to collect the useful information's for the land trend analysis for 40 years. As the results, the land use changes by new residential developments have led to increase the carbon emissions and population concentration rapidly. The urban management planning for low carbon and green growth should consider carbon emissions by population growth derived from land use change. Further research need to estimate the accurate carbon exhaust using relationship model with fuel consumption, carbon estimation, and land use.

Calculation of Greenhouse Gas and Air Pollutant Emission on Inter-regional Road Network Using ITS Information (지능형교통체계(ITS) 정보를 이용한 지역 간 도로의 온실가스 및 대기오염물질 배출량 산정)

  • Wu, Seung Kook;Kim, Youngkook;Park, Sangjo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • Conventionally, greenhouse gas (GHG) emissions in the transport sector have been estimated using the fuel consumption (i.e. Tier 1 method). However, the GHG emissions on road networks may not be practically estimated using the Tier 1 method because it is not practical to monitor fuel consumption on a road segment. Further, air pollutant emissions on a road may not be estimated efficiently by the Tier 1 method either due to the diverse characteristics of vehicles, such as travel speed, vehicle type, model year, fuel type, etc. Given these conditions, the goal of this study is to propose a Tier 3 level methodology to calculate $CO_2$ and $NO_X$ emissions on inter-regional roads using the information from ITS infrastructure. The methodology may avoid the under-estimation issue caused by the concavity of emission factor curves because the ITS speed or volume information is aggregated by a short time interval. The proposed methodology was applied to 4 road segments as a case study. The results show that the management of heavy vehicles' speed is important to control the $CO_2$ and $NO_X$ emissions on road networks.

An Analysis of the Environmental Benefits of the Price Signal Recovery under the Current Electricity Tariff in Korea (국내 계약종별 전기요금 체계의 가격신호 회복에 따른 환경편익 분석)

  • Jae Yeob Kim;Yeonjei Jung
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.909-930
    • /
    • 2022
  • Although the electricity tariff for each customer class in Korea has an institutional basis which can be linked to cost fluctuations caused by the increase in fuel cost, there is a situation in which it cannot be raised in a timely manner, considering the national economic burden such as inflation. There can be some disagreements about unconditionally raising electricity rates when cost increases occur. It is, however, well known that Korean domestic electricity rates are very low around the world and are in an environment in which rates are not easily adjusted. Moreover, as Korean electricity rates cannot be easily raised due to various factors, domestic electricity rates for each customer class itself have not delivered a desirable price signal for power consumption. Based on historical data such as fuel costs and power production by power source from 2017 to 2020, this study estimated how much power consumption would change if electricity rates were adjusted in 2030 and price signal distortion was resolved. As a result of the estimation, power consumption will be reduced by 9,000 GWh if the current electricity bill is adjusted to a level which can be 100% recovered even with the supply cost alone. This led to a reduction of about 3.82 million CO2tons of greenhouse gas emissions in the Korean power sector.

A Study on Estimation of NOx and CO Emission Factor from Industrial and Commercial LNG Boilers (천연가스 사용 난방 및 산업보일러의 NOx와 CO 배출계수 산정 연구)

  • Jang, Young-Kee;Choi, Sang-Jin;Kim, Kwan;Song, Ki-Pong;Kim, Ho-Jung;Jung, Bong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.615-623
    • /
    • 2004
  • This study was conducted for developing the emission factors of nitrogen oxide(NOx) and carbon monoxide (CO) from the combustion boilers burning liquefied natural gas (LNG). These emission factors were compared with those of U.S. EPA and European Environment Agency (EEA). NOx and CO concentration in the flow gas were measured using Kane-May, KM9106 and Thermo Environmental Instruments Inc., 42C-HL. Measurement were conducted at thirty industrial and commercial LNG boilers. Emission factors were calculated on the basis of fuel consumption (kg-pollutant/㎥-fuel burned). NOx concentration at industrial boiler was 14~125 ppm and it was measured as 35~125 ppm at commercial boiler. NOx emission factors of industrial boiler and commercial boiler were 1.84kg/$m^3$ and 2.09kg/$m^3$, respectively. NOx emission factor of commercial boiler was higher than that of industrial boiler. The NOx emission factors estimated in this study were lower than those of U.S. EPA and higher than those of EEA. Average CO emission factor of industrial boiler was 0.65 kg/$m^3$ and at commercial boiler it was 0.70kg/$m^3$, CO emission factor at industrial boiler was lower than that at commercial boiler.

Estimation of Air Pollutant Emissions for the Application of Photochemical Dispersion Model in the Seoul Metropolitan Area (광화학 확산모델 적용을 위한 수도권지역의 대기오염물질 배출량 산출)

  • 이종범;김용국;김태우;방소영;정유정
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • An air pollutant emission inventory system for the input preparations of photochemical dispersion model was developed. Using the system, anthropogenic emissions as well as biogenic emissions in the Seoul metropolitan area were calculated. Anthropogenic emission by fuel combustion using regional cosumption data, and the laundries and so forth was estimated. The biogenic emission was estimated based upon meteorological data and the distribution of land use type in the study area. The anthropogenic emission of pollutants was highest in Seoul, and the second highest in Inchon. TSP and $SO_2$ were found large quantities during the winter due to increased consumption of heating oil. NOx and THC were emitted without seasonal variation. Among biogenic emissions, PAR was very common while NO was the least common. PAR, OLE, and ALD2 were emitted in large volumes in coniferous forest areas, while ISOP was emitted in deciduous forest areas. Generally, most biogenic emissions increased during daytime, and peaked between oen and two o'clock. Because of strong solar radiation, emission during the summer was high. Biogenic NO emissions were found to be lower compared to anthropogenic emissons, and other VOC was indicated relatively high. In the study area, among biogenic emissions PAR was found to be 3 times, OLE 8 times,and ALD2 12 times more common than among anthropogenic emissions.

  • PDF

An Introduction for Optimum Route Assessment System (최적 항로 평가 시스템의 개발 및 적용에 대한 소개)

  • Park, Gun-Il;Lee, Jin-Ho;Kim, Mun-Sung;Bang, Chang-Seon;Choi, Jae-Woong;Choi, Kyong-Soon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.189-192
    • /
    • 2006
  • For the safety and efficiency of voyage, the demand for decision support system in route planning has been increasing with the advance of information technology and the increase of oil price. According to the needs, the authors developed an optimum route assessment system. The system assists an navigator to make an optimum route plan with respect to sailing time and fuel consumption using weather forecast data. Also, the system provides the quantitative estimation for the various safety indexes including parametric roll and etc. Using these functions, a navigator is able to design the safe and efficient voyage plan. The effectiveness of system were verified by the operation during actual voyages and the simulation studies.

  • PDF

Estimation the Critical Accelerations for Fuel Consumption and CO2 Emission When Starting a Passenger car (출발가속주행시 연료소모 및 이산화탄소 배출량 임계가속도 추정)

  • Choi, Eun-jin
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.201-202
    • /
    • 2015
  • 과거 연료소모량과 오염물질 배출량을 추정하기 위한 연구에서는 주로 속도변수를 이용하였으나, 속도의 변화에 따른 연료소모량 및 오염물질 배출량의 변화를 올바르게 반영하지 못하는 문제점이 대두되었다. 이러한 문제점을 극복할 수 있는 대안으로 평가받는 것이 가속도이다. 이처럼 가속도 변수가 중요하게 다루어지고 있으나 여전히 연료소모량이나 오염물질 배출량과 관련하여 급가속을 판단할 만한 기준이 모호하다. 이에 본 연구에서는 연료소모 및 $CO_2$ 배출량을 증가시켜 급가속으로 판단할 수 있는 가속도 임계치를 추정하고자 하였다. 가속도 임계치 및 모형추정을 위해 LPG 중형 승용차량에 장착한 차량 정보 저장장치로부터 가속 주행실험시 수집한 실시간 데이터를 수집 분석하였다. 가속의 특성상 동일한 가속도라 할지라도 정지상태인지 여부에 따라 동일한 가속도에 대한 연료소모량, $CO_2$ 배출량이 상이하게 나타난다. 따라서 실험을 통해 정지상태에서 가속시 관성을 극복하기 위한 동력이 요구되는 속도의 범위를 확인하고 이중 출발 가속주행시 임계가속도를 도출하였다. 가속 주행실험 결과 연료소모 및 $CO_2$ 배출 증가량이 급격히 증가되는 임계가속도를 도출하기 위해 CART 분석을 이용하였으며, 그 결과 정지 상태에서 가속하는 경우 $2.598m/s^2$, 의 가속도가 연료 및 $CO_2$ 배출량을 크게 증가시키는 임계 가속도인 것으로 추정되었다.

  • PDF

Estimation of Economics thorough Prediction of Methane Generation using IPCC Guideline from C Sanitary Landfill (IPCC가이드라인을 이용한 중소도시 C위생매립장의 메탄가스 발생량 예측을 통한 경제성 평가)

  • Lee, Sang-Woo;Park, Seo-Yun;Chang, In-Soo;Kang, Byung-Wook;Park, Sang-Chan;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.189.1-189.1
    • /
    • 2011
  • Global warming effect was intensified due to rapid growth of fossil fuel consumption caused by urbanization and industrialization. Various efforts was being done to solve the problems leading to anomaly climate such as flood, downpour, heavy snow. As a results of international efforts for management of global warming, Kyoto Protocol, which was passed in Kyoto, Japan in 1997, designated $CO_2$, $CH_4$, $N_2O$, HFCs, PFCs, $SF_6$ as a global warming gases. And IPCC(Intergovernmental Panel on Climate Change) suggested IPCC guideline for systematic establishment of national greenhouse gas inventory. Among five categories in IPCC guideline, the representative emission source of waste category is SWDS(solid waste disposal site). The concentrative research should progress for effective management of greenhouse gas related with waste. In this study, Tier1 and Tier2 methods which was suggested by 2006 IPCC(Intergovernmental Panel on Climate Change) guideline, was used to predict methane generation from C sanitary landfill located in Chungju area. To predict methane generation from C sanitary landfill, all factors were defaults values that were provided by 2006 IPCC guideline and Korea emission factors for Tier1 and Tier2 method. And economics of generated methane was estimated. From the predicted result using IPCC guideline, the methane generation was persistingly increased over a 9-year period(2000 ~ 2008). Aggregated amount of methane generation was about 3,017ton and 3,170ton predicted by Tier1 and Tier2, respectively. From the results of estimated economic value gained by generated methane from the C sanitary landfill for ten years from now(2010 ~ 2020), the profit was about 2.39 ~ 2.76 hundred million won.

  • PDF

A Study on the Pro-Environmental Energy Supply Program of Urban Enterprises on the concept of BAT(Best Available Technology): Application of Air Environmental Indices and Benefit-Cost Analysis Based (한 도시 사업체 에너지 수급의 최적화 방안 연구 - 대기오염지수와 경제성 평가를 중심으로 -)

  • Kwon, Yong-Sik;Kim, Yong-Bum;Chung, Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.89-102
    • /
    • 1998
  • The purpose of this study is to seek AEI(Air Environmental Indices), PSI(Pollutant Standard Index) and the urban air quality control goal(the best available alternative energy program) by assessing the best ratio of energy types used in urban enterprises, based on harmful health effect and air quality standard and costs. This study is focused on an urban area(Puchun), where area sourcees are associated with heavy traffic, large population, and its industrial sources with large emissions. In the first step, air modeling, estimation of AEI and PSI, and benefit-cost analysis were carried out. In the second step, we assessed that 660 scenarios about the ratio of B-C oil, light oil and LNG used in urban enterprises with regard to air quality and cost. In the third step, the best available alternative energy program was selected for the ratio of energy species(B-C oil, light oil and LNG) by using the lexicographic method. From the emission analysis, main source of $NO_2$ is identified as industries and air quality is evaluated according to the ratio of B-C oil, light oil and LNG used in urban enterprise. The modeling data of TSP, $SO_2$, $NO_2$, CO, $O_3$, by ISC3 and PBM are respectively $118{\mu}g/m^3$, 0.027ppm, 0.025ppm, 2.0ppm, 0.55ppm in indurstrial area. That data are close to Environmental Air Quality Standard. By means of sensitivity analysis, we obtained the difference in concentration between the areas(Nae-dong, Joong-dong) according to the ratio of B-C oil, light oil and LNG used in the industries. From the result of alternatives assessment the lowest AEI value and cost, the ratio of B-C oil, light oil and LNG are 2.5%, 20%, 77.5%, respectively.

  • PDF

Development on the Methodology of CDM Projects in the SF6 Recovery and Recycling of Electrical Equipment (전력설비에서의 SF6 회수 및 재활용 CDM 방법론 개발)

  • Pyo, Jeong-Gwan;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.143-159
    • /
    • 2011
  • Projects applying the CDM methodology AM0035 of the $SF_6$ Emission Reductions in Electrical Grids should provide direct monitoring of all the key parameters that are related to estimation of baseline and project emissions including detailed explanations of key operating conditions and procedures, and an explanation addressing uncertainty as the result of EB meeting 41. Through this study, recovery ratio during maintenance, purity of $SF_6$ before and after disposal, replacing, loss rate of $SF_6$ before and after reclamation, leakage emission from electricity consumption and fossil fuel combustion, considered conservatively the key parameter of various monitoring. Consequently, confirmed the reduction in the amount of reduction due to the baseline emission decrease, project emission increase.