• Title/Summary/Keyword: Fuel Cell Simulator

Search Result 66, Processing Time 0.022 seconds

Implementation of a Fuel Cell Dynamic Simulator

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.336-342
    • /
    • 2007
  • This paper presents the development of a fuel cell dynamic simulator using a programmable DC power supply and LabVIEW graphical user interface. The developed simulator closely describes the static and dynamic characteristics of an actual proton exchange membrance fuel cell (PEMFC). The experimental results are provided to verify the operation of the simulator. The developed simulator can be used as a convenient and economic alternative to an actual fuel cell for developing and testing a fuel cell power conditioning system.

A Study on PWM Converter/Inverter Drive System by a Fuel Cell Simulator (연료전지 Simulator에 의한 PWM 컨버터/인버터 구동시스템에 관한 연구)

  • 이태원;장수진;김진태;구자성;원충연;김창현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.222-230
    • /
    • 2004
  • In this paper, a 3㎾ fuel cell generation system with an active fuel cell simulator has been proposed. The developed fuel cell simulator generates the actual voltage and current output characteristics of the Polymer Electrolyte Membrane Fuel Cell (PEMFC), so that the overall performance and the dynamics of the proposed system could be effectively examined and tested. In This paper, at first, the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design process of the fuel cell generation system is explained in detail. In addition, the validity of the proposed system has been verified lly the informative simulation and experimental result

A Fuel Cell Generation System with a Fuel Cell Simulator

  • Lee Tae-Won;Jang Su-Jin;Jang Han-Keun;Won Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.55-61
    • /
    • 2005
  • A fuel cell (FC) system includes a fuel processor plus subsystems to manage air, water, and thermal energy, and electric power. The overall system is high-priced and needs peripheral devices. In this paper, a FC simulator is designed and constructed with the electrical characteristics of a fuel cell generation (FCG) system, using uses a simple buck converter to overcome these disadvantages. The characteristic voltage and current (V-I) curve for the FC simulator is controlled by a simplified linear function. In addition, to verify FCG system performance and operation, a full-bridge DC/DC converter and a single-phase DC/AC inverter were designed and constructed for FC applications. Close agreement between the simulation and experimental results confirms the validity and usefulness of the proposed FC simulator.

Implementation of Fuel Cell Simulator for Ship Using the Programmable Power Supply (전력공급장치를 이용한 선박용 연료전지 시뮬레이터의 구현)

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1117-1122
    • /
    • 2012
  • In order to study to apply the fuel cell, the study about the power system design and the load control is needed. However, to experiment the fuel cell need the auxiliary device and the complex control technology. For this reason the simulator is needed and such study is in progress actively. In this paper, the PEMFC (Polymer Electrolyte Membrane Fuel Cell) that is applied the vehicle, the small sized ship was simulated based on LabVIEW. The characteristic of fuel cell simulator was implemented based on a simulation data using the programmable power supply. The I-V characteristic according to various factors and the polarization curve of fuel cell were analysed.

A Study on PWM Converter and Inverter Drive System by a Fuel Cell Simulator (연료전지용 Simulator에 의한 PWM 컨버터/인버터 구동시스템에 관한 연구)

  • Gu J.S.;Lee T.W.;Kim J.T.;Won C.Y.;Kim C.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.701-706
    • /
    • 2003
  • Fuel cell is remarkable for one of the clean energy recently. But in the fuel cell case, it has characteristics with low voltage and high current. Therefore, for using domestic power, it should be changed to the power source with commercial voltage and frequency. In this paper fuel cell simulator having electrical characteristics is designed and constructed instead of fuel cell stack. Voltage generated from fuel cell is from 39V to 72V dc and should be boosted to 400v do for home appliances. A stand alone system including the inverter and DC/DC converter for the fuel cell is then proposed. Experimental result is used to support the analysis.

  • PDF

Implementation of a DSP Based Fuel Cell Hardware Simulator (DSP기반 연료전지 하드웨어 시뮬레이터 구현)

  • Oum, Jun-Hyun;Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.59-68
    • /
    • 2009
  • Fuel cell generators as the distributed generation system with a few hundred watt$\sim$a few hundred kilowatt capacity, can supply the high quality electric power to user as compared with conventional large scale power plants. In this paper, PEMFC(polymer electrolyte membrane fuel cell) generator as micro-source is modelled by using PSIM simulation software and DSP based fuel cell hardware simulator based on the PSIM simulation model is implemented. The relation of fuel cell voltage and current(V-I curve) is linearized by first order function on the ohmic area in voltage-current curve of fuel cell. The implemented system is composed of a PEMFC hardware simulator, an isolated full bridge dc boost converter, and a 60[Hz] voltage source PWM inverter. The voltage-current-power(V-I-P) characteristics of the implemented fuel cell hardware simulator are verified in load variation and transient state and the 60[Hz] output voltage sinusoidal waveform of the PWM inverter is investigated under the resistance load and nonlinear diode load.

A Fuel Cell Simulator for Control Logic Verification and Operator Training (제어로직 검증 및 운전원 훈련용 연료전지 시뮬레이터)

  • Maeng, Jwayoung;Kim, Sungho;Jung, Wonhee;Kang, Seungyup;Hong, Sukkyu;Lee, Sekyoung;Yook, Simkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • This research presents a fuel cell simulator for control logic verification and operator training. Nowadays, power industries are focusing on clean energy as a response to new policy. The fuel cell can be the solution for clean energy, but operating technology is not well developed compared to other conventional power plans because of its short history. Therefore we need a simulator to verify the new control strategy and train operators, because the price of a real fuel cell system is too high and mechanically weak to be used for these kind of purposes. To develop the simulator, a 300 KW MCFC(Molten Carbonate Fuel Cell) system was modeled with stack, BOPs(pre-reformer, steam generator, etc) and mechanical components(valves, pipes, pumps, blowers, etc). The process model was integrated to emulated control system and HMI(Human Machine Interface). A static load and open loop tests were conducted for verifying the accuracy of the process model, since it is the most important part in the simulation. After verifying the process model, an automatic load change and start-up tests were conducted to verify the performance of a new control strategy(logic and functional loops).

  • PDF

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Topology of High Efficiency Power Conversion with Fuel Cell Generation System (고효율 전력변환장치를 사용한 연료전지 시스템의 토폴로지)

  • Mun, S.P.;Suh, K.Y.;Lee, H.W.;Kwon, S.K.;Nakaoko, M.;Shin, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.329-333
    • /
    • 2005
  • In this study paper, a 3[kW] Fuel Cell Generation (FCG)system with Fuel Cell(FC)simulator has been proposed. The developed FC simulator generates the actual voltage and current output characteristics of the Proton Exchange Membrane Fuel Cell (PEMFC), so that the overall performance and the dynamics of the proposed system could be effectively examined and tested. In this paper, at first, the system configuration and operational principle of the developed FC simulator has been investigated and the design process of the FCG system is explained in detail. In addition, the validity of the proposed system has been verified by the informative simulation and experimental results.

  • PDF

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.