• Title/Summary/Keyword: Fuel Cell Hybrid Power System

Search Result 180, Processing Time 0.039 seconds

1.5kW Power converter of Stand alone Fuel cell hybrid System. (1.5kW급 독립형 연료전지 하이브리드시스템 전력변환장치)

  • Shin, Min-Ho;Jung, Doo-Yong;Park, Se-Rin;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.20-21
    • /
    • 2011
  • 본 논문은 1.5[kW]급 독립형 연료전지 하이브리드 시스템의 고효율 전력변환장치에 관한 연구이다. 응답속도가 느린 연료전지 시스템의 안정도를 높이기 위하여 2차 전지를 이용한 하이브리드 시스템으로 구성되었으며, 낮은 출력 전압과 높은 출력 전류의 고효율 컨버터를 구현하기 위하여 입력컨버터는 동기정류 방식의 부스트컨버터와 출력컨버터는 병렬 인터리빙 방식으로 구현하였고, 동작특성 및 효율성을 실험을 통해 증명하였다.

  • PDF

Development of Novel Power Control Algorithm Using Single DC-DC Converter and Inverter for Fuel Cell-Photovoltaic Hybrid System (단일 컨버터 및 인버터를 사용한 연료전지-태양광 복합발전시스템의 새로운 전력제어 알고리즘 개발)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Ko, Jung-Min;Lee, Byoung-Kuk;Lee, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1039_1040
    • /
    • 2009
  • 본 논문에서는 특성이 다른 두 에너지원인 연료전지와 태양광을 최적의 조건으로 복합발전할 수 있도록 새로운 단일 컨버터 및 단일 인버터 구조 및 전력제어 알고리즘을 제안한다. 제안된 회로 및 알고리즘의 타당성을 컴퓨터 시뮬레이션과 실험을 통해 검증한다.

  • PDF

A Study on Power Trading Methods for in a Hydrogen Residential Model (수소주거모델의 전력 거래 참여 방안 고찰)

  • KISEOK JEONG;TAEYOUNG JYUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Participation in power trading using surplus power is considered a business model active in the domestic energy trade market, but it is limited only if the legal requirements according to the type, capacity, and use of the facilities to be applied for are satisfied. The hydrogen residential demonstration model presented in this paper includes solar power, energy storage system (ESS), fuel cell, and water electrolysis facilities in electrical facilities for private use with low-voltage power receiving system. The concept of operations strategy for this model focuses on securing the energy self-sufficiency ratio of the entire system, securing economic feasibility through the optimal operation module installed in the energy management system (EMS), and securing the stability of the internal power balancing issue during the stand-alone mode. An electric facility configuration method of a hydrogen residential complex demonstrated to achieve this operational goal has a structure in which individual energy sources are electrically connected to the main bus, and ESS is also directly connected to the main bus instead of a renewable connection type to perform charging/discharging operation for energy balancing management in the complex. If surplus power exists after scheduling, participation in power trading through reverse transmission parallel operation can be considered to solve the energy balancing problem and ensure profitability. Consequentially, this paper reviews the legal regulations on participation in electric power trading using surplus power from hydrogen residential models that can produce and consume power, gas, and thermal energy including hybrid distributed power sources, and suggests action plans.

Drag Reduction Design for a Long-endurance Electric Powered UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • This study presents computational analyses for low-drag aerodynamic design that are applied to modify a long-endurance UAV. EAV-2 is a test-bed for a hybrid electric power system (fuel cell and solar cell) that was developed by the Korean Aerospace Research Institute (KARI) for use in future long-endurance UAVs. The computational investigation focuses on designing a wing with a reduced drag since this is the main contributor of the aerodynamic drag. The airfoil and wing aspect ratio of the least drag are defined, the fuselage configuration is modified, and raked wingtips are implemented to further reduce the profile and induced drag of EAV-2. The results indicate that the total drag was reduced by 54% relative to EAV-1, which was a small-sized version that was previously developed. In addition, static stabilities can be achieved in the longitudinal and lateral-directional by this low-drag configuration. A long-endurance flight test of 22 hours proves that the low-drag design for EAV-2 is effective and that the average power consumption is lower than the objective cruise powerof 200 Watts.

Comparative Study of Power Sharing Algorithm for Fuel Cell and Photovoltaic Hybrid Generation System of 2CON-1IN Type (2컨버터-1인버터 형태의 복합발전시스템 전력제어 알고리즘 비교분석)

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Moon, Hee-Sung;Lee, Byoung-Kuk;Kim, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1041_1042
    • /
    • 2009
  • 본 논문에서는 연료전지 태양광 복합발전시스템의 2가지 전력제어 알고리즘을 제안하고 각각의 성능을 비교 분석하였다. 태양광의 MPPT제어 위치에 따라 2가지 전력제어 알고리즘이 적용되었으며 각 알고리즘에 따른 MPPT성능, DC link 안정성과 출력전력 특성이 비교 분석되었으며 시뮬레이션 및 실험을 통해 타당성을 검증하였다.

  • PDF

Study of EMB System Using Wedge Structure (웨지 구조를 이용한 전기기계브레이크 시스템 연구)

  • Shin, Dong-Hwan;Kwon, Oh-Seok;Bae, Jun-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • According to the needs of change to hybrid, fuel cell and electric vehicle, and to the increasing demand for safety and eco-friendliness, the necessity of Electro-Mechanical Brake(EMB) is being increased. But, one of the most important problems for realizing EMB to the practical use is that the required motor power for braking is too high. So the high braking efficient EMB is required. In recent years, the Electronic Wedge Brake(EWB) is noticeable for the high braking efficiency. In this research, we examine the improvable matter of the recent published EWB, and we propose the improved mechanism and the cost effective control method using this mechanism. And we test these feasibility by experiment and discuss these meaning and effect.

Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header (디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향)

  • Jeong Young-Jun;Kim Seo-Young;Kim Kwang-Ho;Kwak Jae-Su;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

Optimal Sizing Method of Distributed Energy Resources for a Stand-alone Microgrid by using Reliability-based Genetic Algorithm (신뢰도 기반의 유전자알고리즘을 활용한 독립형 마이크로그리드 내 분산형전원 최적용량 산정 방법)

  • Baek, Ja-Hyun;Han, Soo-Kyung;Kim, Dae-Sik;Han, Dong-Hwa;Lee, Hansang;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.757-764
    • /
    • 2017
  • As the reduction of greenhouse gases(GHGs) emission has become a global issue, the microgrid markets are growing rapidly. With the sudden changes in the market, Korean government suggested a new business model called 'Self-Sufficient Energy Islands'. Its main concern is a stand-alone microgrid composed of Distributed Energy Resources(DERs) such as Renewable Energy Sources(RESs), Energy Storage System(ESS) and Fuel Cell, in order to minimize the emission of GHGs. According to these trend, this paper is written to propose an optimal sizing method of DERs in a stand-alone microgrid by using Genetic Algorithm(GA), one of the representative stochastic methods. It is to minimize the net present cost with the variables, size of RESs and ESS. In the process for optimization, the sunless days are considered as additional constraints. Through the case study analysis, the size of DERs installed in a microgrid system has been computed using the proposed method in MATLAB. And the result of MATLAB is compared with that of HOMER(Hybrid Optimization of Multiple Energy Resources), a well-known energy modeling software.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.