• 제목/요약/키워드: Fuel Boiling

검색결과 161건 처리시간 0.027초

Modeling of deposition and erosion of CRUD on fuel surfaces under sub-cooled nucleate boiling in PWR

  • Seungjin Seo;Nakkyu Chae;Samuel Park;Richard I. Foster;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2591-2603
    • /
    • 2023
  • Simulating the Corrosion-Related Unidentified Deposit (CRUD) on the surface of fuel assemblies is necessary to predict the axial offset anomaly and the localized corrosion induced by the CRUD during the operation of nuclear power plants. A new CRUD model was developed to predict the formation of the CRUD deposits, considering the deposition and erosion mechanisms. The heat transfer and capillary flow within the CRUD were also considered to evaluate the boiling amount within the CRUD layer. This model predicted a CRUD deposit thickness of 44 ㎛ during a one-cycle operation of the Seabrook nuclear power plant. The CRUD deposition tended to accelerate and decelerate during the simulation, by being related to boiling mechanism on the deposits surface. Additionally, during a three-cycle operation corresponding to the refueling period, the CRUD deposition was saturated at a thickness of 80 ㎛, which was in good agreement with the suggested thickness for CRUD buildupin pressurized water reactors. Surface boiling on the thin CRUD deposits enhanced the acceleration of the deposition, even when the wick boiling properties were not favorable for CRUD deposition. To ensure the certainty of the simulation results, sensitivity analyses were conducted for the porosity, chimney density, and the constants employed in the proposed model of the CRUD.

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

다성분연료 분무에 있어서 증발과정의 해석모델 제안 (Propose an Analysis Model of Evaporation Process in Multi-Component Fuel Spray)

  • 염정국;전중지지
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.373-380
    • /
    • 2009
  • The evaporation process of multi-component fuel is different from one of a single component, because the properties of each component affects among the components. In actual engine, the spatial distribution of fuel vapor concentration dominates auto-ignition and initial combustion, and depends on the volatility and diffusivity of each component fuel contained in the multi-component fuel. Then, this study proposes a simplified numerical scheme for analysis of evaporation process of multi-component fuel sprays. Evaporation process is calculated by KIVA-II code based on the simple two-phases region that is approximated by modified saturated liquid-vapor line, which was obtained by connecting the 50% distillation temperature for each component under several pressure fields. Consequently, it can be quantitatively simulated that vapor of low boiling fuel component mostly exists around nozzle and spray tip region, the high boiling duel component, on the other hand, mostly appears near the spray tip.

고온 연료의 오리피스 인젝터 분사특성 연구 (A Study on Injection Characteristics of High Temperature Fuel through Orifice Injectors)

  • 이형주;최호진;김일두;황기영
    • 한국항공우주학회지
    • /
    • 제42권2호
    • /
    • pp.119-126
    • /
    • 2014
  • 본 연구에서는 연료가 비등점 이상의 고온으로 가열된 경우 오리피스 인젝터를 통해 분사되는 특성을 실험한 결과를 정리하였다. 크기가 다른 오리피스 인젝터 3종을 이용하여 3, 5, 10 bar의 분사압력을 가할 때 온도범위 $50{\sim}270^{\circ}C$에서 유량계수(${\alpha}$)를 측정하였다. 측정된 유량계수는 연료온도가 $180^{\circ}C$ 이하 영역에서는 점진적으로 감소하였으나 비등점인 $187^{\circ}C$를 넘어가면서 급격히 감소하였다. 비등점보다 높은 연료온도에서의 유량계수 감소 기울기는 분사압력에 따라 다른데, 특히 분사압력이 낮을수록 비등의 영향이 크게 작용하므로 더 급격한 특성을 보였다. 또한, 직경이 큰 인젝터의 유량계수가 더 크고, 낮은 연료온도 영역에서 난류-층류 천이현상으로 보이는 유량계수의 점프현상이 관찰되었다. 유량계수를 캐비테이션 수($K_c$)에 대하여 도시한 결과 인젝터의 크기가 작을 때는 연료 비등으로 인한 분사특성이 분사압력과 무관한 일정한 값을 가지는 것을 확인하였다.

Numerical investigation of the critical heat flux in a 5 × 5 rod bundle with multi-grid

  • Liu, Wei;Shang, Zemin;Yang, Shihao;Yang, Lixin;Tian, Zihao;Liu, Yu;Chen, Xi;Peng, Qian
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1914-1928
    • /
    • 2022
  • To improve the heat transfer efficiency of the reactor fuel assembly, it is necessary to accurately calculate the two-phase flow boiling characteristics and the critical heat flux (CHF) in the fuel assembly. In this paper, a Eulerian two-fluid model combined with the extended wall boiling model was used to numerically simulate the 5 × 5 fuel rod bundle with spacer grids (four sets of mixing vane grids and four sets of simple support grids without mixing vanes). We calculated and analyzed 11 experimental conditions under different pressure, inlet temperature, and mass flux. After comparing the CHF and the location of departure from the nucleate boiling obtained by the numerical simulation with the experimental results, we confirmed the reliability of computational fluid dynamic analysis for the prediction of the CHF of the rod bundle and the boiling characteristics of the two-phase flow. Subsequently, we analyzed the influence of the spacer grid and mixing vanes on the void fraction, liquid temperature, and secondary flow distribution. The research in this article provides theoretical support for the design of fuel assemblies.

고온 고압기류중을 비행하는 파라핀계 연료액적의 증발에 관한 연구 (An experimental study on the evaporation of paraffin family fuel droplet under high temperature and high pressure)

  • 정성식
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2125-2131
    • /
    • 1991
  • 본 연구에서는 고온고압의 기류중에 투입된 미소연료액적의 증발에 관한 정보 를 구하여 분무연소기구의 해명을 위한 기초테이터를 제공하려 시도한다.

Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

  • Leskovar, Matjaz;Ursic, Mitja
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.72-86
    • /
    • 2016
  • A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel-coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

Improving the Neutronic Characteristics of a Boiling Water Reactor by Using Uranium Zirconium Hydride Fuel Instead of Uranium Dioxide Fuel

  • Galahom, Ahmed Abdelghafar
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.751-757
    • /
    • 2016
  • The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide ($UO_2$) and uranium zirconium hydride ($UZrH_{1.6}$) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with $UO_2$ contains $8{\times}8$ fuel rods while that fueled with $UZrH_{1.6}$ contains $9{\times}9$ fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. $UZrH_{1.6}$ fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

함산소 및 파라핀계 혼합 디젤유 액적의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Diesel Fuel Droplet with Additive Oxygenate and Paraffin)

  • 김봉석;궁본등
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.49-56
    • /
    • 2006
  • The single droplet combustion characteristics of multicomponent fuel such as diesel-oxygenate and diesel-paraffin blends under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may be concluded as follows : In the combustion of diesel fuel droplet with additive of oxygenate and paraffin, the dimensionless droplet size of $(D/D_o)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature diesel fuel evaporates and burns faster than usual diesel fuel. This rapid burning may result from so-called "micro-explosion" and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels. When compared to ordinary diesel fuel, neat oxygenate and paraffin fuels show blue flame during entire combustion which prove smokeless combustion.

THE EFFECT OF MICRO/NANOSCALE STRUCTURES ON CHF ENHANCEMENT

  • Ahn, Ho-Seon;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.205-216
    • /
    • 2011
  • Recently, many research studies have investigated the enormous critical heat flux (CHF) enhancement caused by nanofluids during pool boiling and flow boiling. One of the main reasons for this enhancement is nanoparticle deposition on the heated surface. However, in real applications, nanofluids create many problems when used as working fluids because of sedimentation and aggregation. Therefore, artificial surfaces on silicon and metal have been developed to create an effect similar to that of nanoparticle deposition. These modified surfaces have proved capable of greatly increasing the CHF during pool boiling, and good results have also been observed during flow boiling. In this study, we demonstrate that the wetting ability of a surface, i.e., wettability, and the liquid spreading ability (hydrophilic surface property), are key parameters for increasing the CHF during both pool and flow boiling. We also demonstrate that when the fuel surface in nuclear power plants is modified in a similar manner, it has the same effect, producing a large CHF enhancement.