• Title/Summary/Keyword: Fuel Additive

Search Result 147, Processing Time 0.028 seconds

A Study on the Variation of Physical & Chemical Properties with Refining Treatment and Additive Mixture for Marine Fuel Oil (선박연료유의 정제처리 및 첨가제 혼합에 따른 물리.화학적 특성 변화에 관한 연구)

  • Han, Won-Hui;Nam, Jeong-Gil;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.39-45
    • /
    • 2007
  • Recently it is a tendency that the heavy fuel oil is considered to be used on board even middle or small sized vessels in order to reduce the operating cost of vessel mused by a rise in international oil prices. In this study, analyzed the physical & chemical properties and examined the effect of refining treatment and a fuel oil additive for MF30 fuel oil which is a mixture fuel oil mixed M.G.O and the heavy oil MF380 use to be possible in the middle&small class vessel. As a results, the effects of two of pre-refinery treatment methods as centrifugal purifier and heating & homogenizing system(M.C.H) are some feeble, but the pour point and the flash point came to be low more or less. The effect of property improvement which is mused by the fuel oil additive did not appear positively.

  • PDF

FUEL PROPERTIES AND EMISSIONS CHARACTERISTICS OF ETHANOL-DIESEL BLEND ON SMALL DIESEL ENGINE

  • Xu, B.Y.;Qi, Y.L.;Zhang, W.B.;Cai, S.L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.

EffECTIVE PARTICULATES REDUCTION IN DIESEL ENGINES THROUGH THE USE OF FUEL CATALYSED PARTICULATE FILTERS

  • Vincent, M.-W.;Richards, P.-J.;Rogers, T.-J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • There is Increasing world-wide interest in diesel particulate filters (DPF) because of their proven effectiveness in reducing exhaust smoke and particulate emissions. Fine particulates have been linked to human health . DPF use requires a means to secure the bum-out of the accumulated soot, a process called regeneration. If this is not achieved, the engine cannot continue to operate. A number of techniques are available, but most are complex, expensive or have a high electrical demand. The use of fuel additives to catalyse soot bum-out potentially solves the problem of securing regeneration reliably and at low cost. Work on organo-metallic fuel additives has shown that certain metals combine to glove exceptional regeneration performance. Best performance was achieved with a combination of iron and strontium based compounds. Tests were carried out un a bed engine and on road vehicles, which demonstrated effective and reliable regeneration from a tow dose fuel additive, using a single passive DPF. No control valves, flow diverters. heaters or other devices were employed to assist regeneration. Independent particle size measurements showed that there were no harmful side effects from the use of the iron-strontium fuel additive.

FABRICATION OF U-10WT.%Zr-RE FUEL SLUGS BY RECYCLING OF METALLIC FUEL SCRAPS

  • KI-HWAN KIM;SEUNG-UK MUN;SEONG-JUN HA;SEOUNG-WOO KUK;JEONG-YONG PARK
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.3
    • /
    • pp.1035-1039
    • /
    • 2020
  • U-10wt.%Zr-5wt.%RE fuel slugs for a sodium-cooled fast reactor (SFR) were conventionally prepared by a modified injection casting method, which had the drawback of a low fabrication yield rate of approximately 60% because of the formation of many metallic fuel scraps, such as melt residue and unsuitable fuel slug butts. Moreover, the metallic fuel scraps were classified as a radioactive waste and stored in temporary storage without recycling. It is necessary to develop a recycling process technology for scrap wastes in order to reduce the radioactive wastes of the fuel scraps and improve the fabrication yield of the fuel slugs. In this study, the additive recycling process of the metallic fuel scraps was introduced to re-fabricate the U-10wt.%Zr-5wt.%RE fuel slugs. The U-10wt.%Zr-5wt.%RE fuel scraps were cleaned on the surface impurity layers with a mechanical treatment that used an electric brush under an Ar atmosphere. The U-10wt.%Zr-5wt.%RE fuel slugs were soundly re-fabricated and examined to evaluate the feasibility of the additive process compared with the metallic fuel slugs that used pure metals.

An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine (2행정 대형 디젤엔진의 성능향상을 위한 연료첨가제의 실험적 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.620-625
    • /
    • 2015
  • In an effort to reduce the onset of global warming, the International Maritime Organization Marine Environment Protection Committee (IMO MEPC) proposed the reduction in ship speeds as a way of lowering the proportion of carbon dioxide ($CO_2$) in the Green House Gas emissions from ships. To minimize fuel costs, shipping companies have already been performing slow steaming for their own fleets. Specifically, the slow steaming approach has been adopted for most ocean-going container lines. In addition, because of the increased marine fuel cost that is required to enable increased capacity, there is an urgent need for more advanced fuel-saving technologies. Therefore, in this present study, we propose a fuel-cost reduction method that can improve the performance of diesel engines. We introduce a predetermined amount (0.025% of the amount of fuel used) of fuel additive (oil-soluble calcium-based organometallic compound). For improved experimental accuracy, as the test subjects, we utilize a large two-stroke diesel engine installed in land plants. The loads of the test engine were classified as low, medium, and high (50, 75, and 100%, respectively). We compare the engine performance parameters (power output, fuel consumption rate, p-max, and exhaust temperature) before and after the addition of fuel additives. Our experimental results, confirmed that we can realize fuel-cost savings of at least 2% by adding the fuel additive in low load conditions (50%). Likewise, the maximum combustion pressure was found to have increased. On the other hand, we observed that there was a reduction in the exhaust temperature.

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.

Improvement of the performance and emission in a four-stroke diesel engine using fuel additive (4행정 디젤엔진에 연료첨가제 사용에 따른 성능 및 배기배출물 개선에 관한 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.762-767
    • /
    • 2016
  • High thermal efficiency and the ability to use various types of fuel are a few of the many advantages of diesel engines. However, a major disadvantage is that their exhaust emissions are more harmful to humans and the environment than that of conventional engine. Consequently, the provisions of the international emissions standards for diesel engine equipped passenger cars, commercial vehicles, and ships have become more stringent. These standards include the EU Euro 6, the IMO MEPC Tier 3, and the US EPA Tier 4. Ryu et al. published a study that applied fuel additives to two-stroke diesel engines. In this study, a four-stroke diesel engine using diesel oil for a generator is utilized as the test subject, and an experiment is performed to verify whether fuel additive can be used to improve performance and exhaust emissions. In addition, this experimental study presents research results for the application of fuel additives in both two-stroke and four-stroke diesel engines. The experimental results were compared and analyzed by placing an oil-soluble calcium-based organometallic compound in diesel oil. The results confirmed that the addition of fuel additive improved the performance (fuel consumption rate, exhaust gas temperature) and exhaust emissions (NOx, CO) of the diesel engine.

EFFECT OF ADDITIVE ON THE HEAT RELEASE RATE AND EMISSIONS OF HCCI COMBUSTION ENGINES FUELED WITH RON90 FUELS

  • Lu, X.C.;Ji, L.B.;Chen, W.;Huang, Z.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of the di-tertiary butyl peroxide (DTBP) additive on the heat release rate and emissions of a homogeneous charge compression ignition (HCCI) engine fueled with high Research Octane Number (RON) fuels were investigated. The experiments were performed using 0%, 1%, 2%, 3%, and 4% (by volume) DTBP-RON90 blends. The RON90 Fuel was obtained by blending 90% iso-octane with 10% n-heptane. The experimental results show that the operation range was remarkably expanded to lower temperature and lower engine load with the DTBP additive in RON90 fuel. The first ignition phase of HCCI combustion was observed at 850 K and ended at 950 K while the hot ignition occurred at 1125 K for all fuels at different engine working conditions. The chemical reaction scale time decreases with the DTBP addition. As a result, the ignition timing advances, the combustion duration shortens, and heat release rates were increased at overall engine loads. Meanwhile, the unburned hydrocarbon (UHC) and CO emissions decrease sharply with the DTBP addition while the NOx emissions maintain at a lower level.

A Study on the Prediction of Fuel Consumption of Bulk Ship Main Engine Using Explainable Artificial Intelligence (SHAP을 활용한 벌크선 메인엔진 연료 소모량 예측연구)

  • Hyun-Ju Kim;Min-Gyu Park;Ji-Hwan Lee
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.182-190
    • /
    • 2023
  • This study proposes a predictive model using XGBoost and SHapley Additive exPlanation (SHAP) to estimate fuel consumption in bulk carriers. Previous studies have also utilized ship engine data and weather data. However, they lacked reliability in predicted results and explanations of variables used in the fuel consumption prediction model implementation. To address these limitations, this study developed a predictive model using XGBoost and SHAP. It provides research background, scope, relevant regulations, previous studies, and research methodology. Additionally, it explains the data cleaning method for bulk carriers and verifies results of the predictive model.

Experimental Study on Combustion and Emission Characteristics of Diesel Engine with Hydrogen Application (수소를 첨가한 디젤엔진의 연소 및 배기특성에 관한 실험적 연구)

  • Oh, Jungmo
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.203-209
    • /
    • 2017
  • The International maritime organization(IMO), in an effort to slow down the global warming, proposes reduction in ship's speed as a way to lower the rate emissions from ships. In addition, since ship's fuel cost have been increased, the shipping volumes, fuel-saving technology are being required urgently. Therefore, in this present study, a method of reducing the fuel cost that can improve the performance of the diesel engine was tried by introducing a predetermined amount (0.1~0.3% of the mass amount of fuel used) of hydrogen fuel additive. The experimental conditions of the test engine were 1500rpm and torque BMEP-10b ar. The engine performances (power output, fuel consumption rate, p-max, exhaust temperature) were compared before and after addition of hydrogen fuel additives. This experimental study confirmed reducing at least 2% fuel consumption and 2.19% NOx emission.