• 제목/요약/키워드: Fuel Activation Device

검색결과 4건 처리시간 0.017초

Evaluation of the cavitation effect on liquid fuel atomization by numerical simulation

  • Choi, Sang In;Feng, Jia Ping;Seo, Ho Suk;Jo, Young Min;Lee, Hyun Chang
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2164-2171
    • /
    • 2018
  • Heavy duty diesel vehicles deteriorate urban air quality by discharging a large volume of air pollutants such as soot and nitrogen oxides. In this study, a newly introduced auxiliary device a fuel activation device (FAD) to improve the combustion efficiency of internal engines by utilizing the cavitation effect was closely investigated by the fluid flow mechanism via a numerical analysis method. As a result, the FAD contributed to fuel atomization from the injection nozzle at lower inlet pressure by reducing the pressure energy. The improved cavitation effect facilitated fuel atomization, and ultimately reduced pollutant emission due to the decrease in fuel consumption. The axial velocity along the flow channel was increased 8.7 times with the aid of FAD, which improved the primary break-up of bubbles. The FAD cavitation effect produced 1.09-times larger turbulent bubbles under the same pressure and fuel injection amount than without FAD.

연료 활성화를 위한 디젤 미립화 장치의 수치해석 연구 (Numerical Study of Diesel Atomization Device for Fuel Activation)

  • 최상인;;서호석;김상범;조영민
    • 한국대기환경학회지
    • /
    • 제33권4호
    • /
    • pp.306-318
    • /
    • 2017
  • Heavy diesel vehicles are one of major sources of urban fine dust in Korea and other developing countries. In this study, an auxiliary device assisting fuel atomization, which is called FAD (Fuel Activation Device), was closely reviewed through numerical simulation. As calculated, the diesel flow velocity passing across FAD increased up to 1.68 times, and it enhanced the cavitation effect which could improve the injected fuel atomization. Super cavitation phenomenon, which is the most important effect on nozzle injection, has occurred until the cavitation number (${\sigma}$) decreased from 1.15 to 1.09, and atomized droplets via a nozzle of which opening was $500{\mu}m$ distributed less than $200{\mu}m$ in sauter mean diameter (SMD).

RADIOLOGICAL CHARACTERISTICS OF DECOMMISSIONING WASTE FROM A CANDU REACTOR

  • Cho, Dong-Keun;Choi, Heui-Joo;Ahmed, Rizwan;Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.583-592
    • /
    • 2011
  • The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be $1.04{\times}10^{16}$ Bq, $2.09{\times}10^3$ W, $5.31{\times}10^{14}\;m^3$-water, $4.69{\times}10^5$ kg, and $7.38{\times}10^1\;m^3$, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

직접 메탄올 연료전지용 메탄올 센서의 백금 두께의 변화에 따른 전류-전압 특성 변화 (I-V Characteristics of a Methanol Sensor for Direct Methanol fUel Cell(DMFC) as a Function of Deposited Platinum(Pt) Thickness)

  • 양진석;김성일;김춘근;박정호
    • 마이크로전자및패키징학회지
    • /
    • 제14권1호
    • /
    • pp.49-53
    • /
    • 2007
  • 직접 메탄올 연료전지는 간단한 구조와 디자인 그리고 높은 에너지 밀도와 에너지 변환 효율등의 장점으로 인하여 휴대용 장치들의 전력원으로 사용된다. 본 논문에서는 직접 메탄올 연료전지의 연료 농도를 감지하기 위한 얇은 나피온 막과 Pt 촉매전극의 합성으로 만들어진 메탄을 센서를 제작하였다. 제작된 메탄을 센서를 사용하여 메탄올 농도와 촉매전극(Pt)의 두께 변화에 따른 전류-전압 특성을 분석하였다. Pt 촉매전극 10nm, 전압이 1V 이고 메탄올 농도 1, 2, 3M일 때 전류 값이 각각 $1.30{\times}10^{-6}A,\;1.96{\times}10^{-6}A,\;2.80{\times}10^{-6} A$ 이었다. 메탄올 농도를 2M로 고정하고 촉매전극의 두께를 5, 10, 15nm로 변화시켰을 때 전류 값은 각각 $3.06{\times}10^{-6}A,\;1.96{\times}10^{-6}A,\;1.00{\times}10^{-6}A$ 이었다. 촉매전극이 얇을수록 전류가 증가하고 전기화학반응이 더 활발히 일어나는 것으로 사료된다.

  • PDF