• Title/Summary/Keyword: Frontier Science

Search Result 295, Processing Time 0.032 seconds

Measuring the efficiency and determinants of rice production in Myanmar: a translog stochastic frontier approach

  • Wai, Khine Zar;Hong, Seungjee
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • This study investigated the extent to which rice producers from the Ayeyarwaddy Region of Myanmar could improve their productivity if inputs were used efficiently in rice cultivation. To achieve this objective, simple random sampling was used to collect data from 300 rice growers in the study area. Data were analyzed with the translog stochastic frontier approach to understand the production efficiencies. The study further estimated the influencing factors that affect the efficiency levels of rice farmers. The empirical result reveals that the average technical, allocative, and economic efficiencies were at 76.11, 47.85, and 34.15%, respectively. This suggests that there is considerable room for improving rice production by better utilization of the available resources at the current level of technology. This study suggests that strenthening agricultural training programs and adoption of improved rice varieties may reduce overall inefficiencies among rice farmers in Myanmar. Factors like age, household size, education, farming experience, farm size, rice variety, training, and off-farm income have a significant impact on increasing/decreasing farmer's efficiency. Efficiency can be improved by establishing farmer field school programs to increase the scale of operations. The government should encourage young educated people to participate in paddy production and also intervene to reduce input prices and control the quality of seeds.

The Therapeutic Role of Nanoparticle Shape in Traumatic Brain Injury : An in vitro Comparative Study

  • Youn, Dong Hyuk;Jung, Harry;Tran, Ngoc Minh;Jeon, Jin Pyeong;Yoo, Hyojong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.196-203
    • /
    • 2022
  • Objective : To perform a comparative analysis of therapeutic effects associated with two different shapes of ceria nanoparticles, ceria nanorods (Ceria NRs) and ceria nanospheres (Ceria NSs), in an in vitro model of traumatic brain injury (TBI). Methods : In vitro TBI was induced using six-well confluent plates by manually scratching with a sterile pipette tip in a 6×6-square grid. The cells were then incubated and classified into cells with scratch injury without nanoparticles and cells with scratch injury, which were treated separately with 1.16 mM of Ceria NSs and Ceria NRs. Antioxidant activities and anti-inflammatory effects were analyzed. Results : Ceria NRs and Ceria NSs significantly reduced the level of reactive oxygen species compared with the control group of SH-SY5Y cells treated with Dulbecco's phosphate-buffered saline. The mRNA expression of superoxide dismutases was also reduced in nanoparticle-treated SH-SY5Y cells, but apparently the degree of mRNA expression decrease was not dependent on the nanoparticle shape. Exposure to ceria nanoparticles also decreased the cyclooxygenase-2 expression, especially prominent in Ceria NR-treated group than that in Ceria NS-treated group. Conclusion : Ceria nanoparticles exhibit antioxidant and anti-inflammatory effects in TBI models in vitro. Ceria NRs had better anti-inflammatory effect than Ceria NSs, but showed similar antioxidant activity.

Securing the IoT Frontier: Exploring the Limitation and Future Directions in Cybersecurity

  • Moustafa Abdelrahman Mahmoud Ahmed;Nur Arzilawati Md Yunus
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • As the Internet of Things (IoT) continues to permeate every facet of modern life, the imperative to secure this vast and dynamic frontier becomes increasingly paramount. This presents a comprehensive exploration of the challenges and opportunities inherent in safeguarding the interconnected web of IoT devices. The research critically examines the limitations of current cybersecurity measures through an extensive review of diverse topics, including IoT network performance, smart grid security, and the escalating cyber threats against critical infrastructures. A meticulous analysis of research findings underscores the need for enhanced infrastructure and ongoing research to fortify the cybersecurity mechanisms surrounding IoT objects. We underline the imperative of relentless research efforts to parry the advancing threats and leverage the promise of nascent technologies. Our findings affirm the pivotal influence of robust cybersecurity measures in crafting a resiliently connected ecosystem. The paper underscores the importance of ongoing research to address evolving threats and harness the potential of emerging technologies, reaffirming the central role of cybersecurity in shaping a secure interconnected world. In conclusion, the study emphasizes the dynamic and ever-evolving nature of cybersecurity on the IoT frontier. It unveils a complex landscape of challenges, ranging from network performance intricacies to the security concerns of critical infrastructures.

Novel Genome-Wide Interactions Mediated via BOLL and EDNRA Polymorphisms in Intracranial Aneurysm

  • Eun Pyo Hong;Dong Hyuk Youn;Bong Jun Kim;Jae Jun Lee;Sehyeon Nam;Hyojong Yoo;Heung Cheol Kim;Jong Kook Rhim;Jeong Jin Park;Jin Pyeong Jeon
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.409-417
    • /
    • 2023
  • Objective : The association between boule (BOLL) and endothelin receptor type A (EDNRA) loci and intracranial aneurysm (IA) formation has been reported via genome-wide association studies. We sought to identify genome-wide interactions involving BOLL and EDNRA loci for IA in a Korean adult cohort. Methods : Genome-wide pairwise interaction analyses of BOLL and EDNRA involving 250 patients with IA and 296 controls were performed using the additive effect model after adjusting for confounding factors. Results : Among 512575 single-nucleotide polymorphisms (SNPs), 23 and 11 common SNPs suggested a genome-wide interaction threshold (p<1.25×10-8) involving rs700651 (BOLL) and rs6841581 (EDNRA). Rather than singe SNP effect of BOLL or EDNRA on IA development, they showed a synergistic effect on IA formation via multifactorial pair-wise interactions. The rs1105980 of PTCH1 gene showed the most significant interaction with rs700651 (natural log-transformed odds ratio [lnOR], 1.53; p=6.41×10-11). The rs74585958 of RYK gene interacted strongly with rs6841581 (lnOR, -19.91; p=1.64×10-9). Although, there was no direct interaction between BOLL and EDNRA variants, two EDNRA-interacting gene variants of TNIK (rs11925024 and rs1231) and FTO (rs9302654), and one BOLL-interacting METTL4 gene variant (rs549315) exhibited marginal interaction with BOLL gene. Conclusion : BOLL or EDNRA may have a synergistic effect on IA formation via multifactorial pair-wise interactions.

Ferroelectric-gate Field Effect Transistor Based Nonvolatile Memory Devices Using Silicon Nanowire Conducting Channel

  • Van, Ngoc Huynh;Lee, Jae-Hyun;Sohn, Jung-Inn;Cha, Seung-Nam;Hwang, Dong-Mok;Kim, Jong-Min;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.427-427
    • /
    • 2012
  • Ferroelectric-gate field effect transistor based memory using a nanowire as a conducting channel offers exceptional advantages over conventional memory devices, like small cell size, low-voltage operation, low power consumption, fast programming/erase speed and non-volatility. We successfully fabricated ferroelectric nonvolatile memory devices using both n-type and p-type Si nanowires coated with organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] via a low temperature fabrication process. The devices performance was carefully characterized in terms of their electrical transport, retention time and endurance test. Our p-type Si NW ferroelectric memory devices exhibit excellent memory characteristics with a large modulation in channel conductance between ON and OFF states exceeding $10^5$; long retention time of over $5{\times}10^4$ sec and high endurance of over 105 programming cycles while maintaining ON/OFF ratio higher $10^3$. This result offers a viable way to fabricate a high performance high-density nonvolatile memory device using a low temperature fabrication processing technique, which makes it suitable for flexible electronics.

  • PDF

Tribology in Human Joints

  • Ikeuchi, K.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.13-16
    • /
    • 2000
  • PDF

Effect of Orchardgrass Varieties on Callus Culture and Plant Regeneration (오차드그래스의 품종이 캘러스배양과 식물체 재분화에 미치는 영향)

  • Lee, Sang-Hoon;Lee, Ki-Won;Lee, Dong-Gi;Kim, Do-Hyun;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.187-192
    • /
    • 2006
  • In order to investigate the effects of genetic variations of orchardgrass in tissue culture response, calli were induced from mature seeds of eight varieties, 'Hapsung 2', '93E', 'Amba', 'Ambassdor', 'Frode', 'Frontier', 'Potomac' and 'Roughrider', and plant regeneration frequency was compared. Significant differences were observed among the varieties in both callus induction and plant regeneration. Callus induction rate of viable seeds varied from 24.3% to 71.7%. Plant regeneration frequency ranged from 76.6% to 29.7%. 'Roughrider' varieties showed higher regenerability with the frequency of 76.6%. These results can be used not only to provide additional improvements in the plant regeneration frequency from transgenic callus, but also useful for molecular breeding of orchardgrass through genetic transformation.

Atmospheric Bioaerosol, Bacillus sp., at an Altitude of 3,500 m over the Noto Peninsula: Direct Sampling via Aircraft

  • Kobayashi, Fumihisa;Morosawa, Shinji;Maki, Teruya;Kakikawa, Makiko;Yamada, Maromu;Tobo, Yutaka;Hon, Chun-Sang;Matsuki, Atsushi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.164-171
    • /
    • 2011
  • This work focuses on the analysis of bioaerosols in the atmosphere at higher altitudes over Noto Peninsula, Japan. We carried out direct sampling via aircraft, separated cultures, and identified present isolates. Atmospheric bioaerosols at higher altitudes were collected using a Cessna 404 aircraft for an hour at an altitude of 3,500 m over the Noto Peninsula. The aircraft-based direct sampling system was devised to improve upon the system of balloon-based sampling. In order to examine pre-existing microorganism contamination on the surface of the aircraft body, bioaerosol sampling was carried out just before takeoff using the same method as atmospheric sampling. Identification was carried out by a homology search for 16S or 18S rDNA isolate sequences in DNA databases (GenBank). Isolate sampling just before takeoff revealed Stretpomyces sp., Micrococcus sp., and Cladosporium sp. One additional strain, Bacillus sp., was isolated from the sample after bioaerosol collection at high altitude. As the microorganism contamination on the aircraft body before takeoff differed from that while in the air, the presence of additional, higher atmosphere-based microorganisms was confirmed. It was found that Bacillus sp. was floating at an altitude of 3,500 m over Noto Peninsula.