• 제목/요약/키워드: Frontal crash simulation

검색결과 36건 처리시간 0.019초

전역 최적화기법을 이용한 승객보호장치의 설계 (Design of Occupant Protection Systems Using Global Optimization)

  • 전상기;박경진
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.135-142
    • /
    • 2004
  • The severe frontal crash tests are NCAP with belted occupant at 35mph and FMVSS 208 with unbelted occupant at 25mph, This paper describes the design process of occupant protection systems, airbag and seat belt, under the two tests. In this study, NCAP simulations are performed by Monte Carlo search method and cluster analysis. The Monte Carlo search method is a global optimization technique and requires execution of a series of deterministic analyses, The procedure is as follows. 1) Define the region of interest 2) Perform Monte Carlo simulation with uniform distribution 3) Transform output to obtain points grouped around the local minima 4) Perform cluster analysis to obtain groups that are close to each other 5) Define the several feasible design ranges. The several feasible designs are acquired and checked under FMVSS 208 simulation with unbelted occupant at 25mph.

뒷좌석 승객 보호를 위한 안전띠의 기하학적 특성에 대한 연구 (A study of rear seat belts geometric characteristics for rear seated occupants protections)

  • 윤영한;박지양;이승상;김민용
    • 자동차안전학회지
    • /
    • 제7권1호
    • /
    • pp.45-50
    • /
    • 2015
  • The protection of frontal seat passengers in both driver and front seated occupant has been more focused from the auto industries as well as regulatory bodies more than 40 years. Recently, their interests have been extended to rear seat occupants especially children and female occupants. However, the current available safety devices for the rear seat occupants are seat belt only. According to the previous researchers, the injury level of the rear seat passengers tend to be higher than the injury level of the frontal seat passengers. In this study, the optimal location of seat belts anchorages to enhance rear passengers crashworthiness are studied. FEM models are designed in accordance with regulation of KMVSS102, UN R44, UN R16, and UN R14. and three point belts are fitted on the HybridIII 5th percentile dummy and HybridIII 50th percentile dummy. The combined injury value used HIC15, Nij, Chest deflection, Femur force are used to evaluate rear seat belt anchorage optimal locations.

운전석 에어백을 장착한 중형 트럭의 승객거동해석을 위한 유한요소 모델의 개발 (Development of a Finite Element Model for Studying the Occupant Behavior of a Mid-Size Truck with a Driver Side Airbag)

  • 홍창섭;오재윤;이대창
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.220-225
    • /
    • 2000
  • This paper develops a finite element model for studying occupant behavior of a mid-size truck equipped with a driver side airbag. The developed model simulates an occupant behavior using PAM-CRASH/PAM-SAFE in super computer SP2. The model is developed based on a sled test. A 50% hybrid dummy III is used for measuring head and chest accelerations and femur loads, and major injury coefficients such as HIC, CA and femur load. Inferior components such as foot rest, seat, kneebolster, crash pad, etc. are roughly modeled and defined by a rigid material model. And contact type II is used for detecting a contact with dummy. Contact type II definition uses force-deflection relationship of each body Such components as steering column which directly affect on the occupant injuy are modeled in detail and defined by an elastic-plastic material model. Airbag cushion is modeled using rivet elements. Airbag cover groove is modeled using rivet elements. Airbag tether is modeled as nonlinear bar elements. Airbag model has two vent holes to ventilating the exploded gas. Airbag is folded close to the real airbag folding procedure, and folded cautiously in order not to have initial penetration. A vehicle pulse acquired from 31mph frontal barrier test is used as input signal for the simulation. The simulation conditions are tuned to the sled test ones. The measured dummy accelerations and major injury coefficients, and filmed dummy behavior and airbag inflation process using high speed camera are compared to the simulation results to verify the developed finite element model.

  • PDF

차 대 보행자 충돌 시 사고해석 모델 개발 (Development of Accident Analysis Model in Car to Pedestrian Accident)

  • 강대민;안승모
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.76-81
    • /
    • 2009
  • The fatalities of pedestrian account for about 21.2% of all fatalities at 2007 year in Korea. To reconstruct exactly the accident, it is important to calculate the throw distance of pedestrian in car to pedestrian accident. The frontal shape of SUV vehicle is dissimilar to passenger car and bus, so the trajectory and throw distance of pedestrian by SUV vehicle is not the same of passenger car and bus. The influencing on it can be classified into the factors of vehicle and pedestrian, and road factor. It was analyzed by PC-CRASH for simulation, and SPSS s/w was used for regression analysis. From the simulation results, the maximum impact energy of multi-body of pedestrian was occurred to that of torso body at the same time. And the throw distance increased with the increasing of impact velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and the throw distance of wet road was longer than that of dry road. Finally, the regression analysis model of SUV(Nissan Pathfinder type)vehicle in car to pedestrian accident was as follows; $$disti_i=-0.87-0.11offseti_i+0.69speed_i-4.27height_i+0.004walk_i+0.63wet_i+{\epsilon}_i$$.

  • PDF

차량용 MR 충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

보론강을 이용한 리어 범퍼 임팩트빔의 경량 설계 및 해석 (Light-weight Design and Simulation of Automotive Rear Bumper Impact Beam Using Boron Steels)

  • 김기주;한창평;임종한;이영숙;원시태;이재웅
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.98-102
    • /
    • 2012
  • Increasing the fuel economy has been an inevitable issue for the development of new cars, and one of the important measures to improve the fuel economy is to decrease the vehicle weight. In order to obtain this goal, the researches about lighter, stronger and the well impact absorbing bumper impact beam have been studied without sacrificing bumper safety. In this study, the overall weight reduction possibility of rear bumper impact beam could be examined based on the variation of frontal, offset and corner impact crash capability by substituting a ultra high strength steel material (boron steel ) having tensile strength of 1.5 GPa grade instead of conventional steels. In addition, the section variations (open section, closed section, open section with 5 stays) of the bumper impact beam structure were examined carefully. It could be reached that this analysis could be well established and be contributed for design guide and the optimum design conditions of the automotive rear bumper impact beam development.