• Title/Summary/Keyword: Frontal crash Safety assessment

Search Result 11, Processing Time 0.021 seconds

The Study on the Effect of Seatbelt anchorage points using Q6 in sled test (좌석안전띠 부착장치 위치에 따른 어린이 충돌안전성 연구)

  • Kim, Siwoo;Ryu, Hyun;Kim, Yonggil;Baek, Seonhyeon;Kim, Minwoo;Park, Jihun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.49-54
    • /
    • 2014
  • Development in vehicle industry could increase interest in children's safety recently. However the research of children safety is not being conducted as many as that of adult's. Especially the basic study for the vehicle crash on-board children was not much. This study focused on the effect of seatbelt anchorage points to evaluate children's safety in frontal crash. The current regulation of the seatbelt anchorage points is suitable for ranged from female 5% to male 95%. The assessment of children's safety at buckle up of no used CRS(child restraint system) was performed using frontal sled tests. The frontal crash pulse in sled tests was designed to the average of about 30 KNCAP frontal crash pulses. To reduce number of experiments, DOE is used. The Q6 child dummy and standard seat in UN R 129 were used. According to the analysis of test results, children's safety has been influenced by the points of seatbelt anchorage.

Experimental Study on the Small Overlap Frontal Crash Test Method (국부정면충돌 시험방법에 관한 실험적 연구)

  • Kim, Dea Up;Woo, Chang Gi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • In order to improve occupant protection in frontal crash, the IIHS introduced a small overlap frontal crash test in 2012. When the front corner of a car collides with another car or object, such as utility pole the test replicated the sequence of events. Because occupants move simultaneously forward and toward the side of the vehicle this test is challenging for some airbag and safety belt designs. In the small overlap frontal test, a car travels at 64 km/h toward a rigid barrier. A hybrid III dummy is positioned in the driver seat. 25% of the total width of the car strikes the barrier on the driver side. After review of small overlap frontal test protocol and overall rating, six run-throughs were performed according to the original test method.

Study on FWDB Frontal Vehicle Crash Test (FWDB 정면충돌시험에 대한 연구)

  • Kim, Joseph;Beom, Hyen-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In proportion to increasing interest in vehicle safety, many country have regulated vehicle safety and performed NCAP(New Car Assessment Program). However vehicles which had good results in these compliance and NCAP frontal crash test have caused problems such as the fork effect and over-riding in real car-to-car accidents. To complement these issues, new frontal crash test modes using new barrier like FWDB and PDB have been developed by EEVC WG15. In this paper, FWDB frontal crash test was performed and the result was compared with the full frontal crash test using the rigid wall in order to comprehend the characteristic of FWDB. The results of FWDB test were compared with one of USNCAP and KNCAP. Using USNCAP data, vehicle performance like deformation and wall force were studied. A comparative study of dummy injuries was made by using KNCAP result. The results showed that vehicle performance of FWDB test like displacement and effective acceleration was similar in spite of absorbing energy of FWDB due to the greater vehicle deformation of rigid wall test. In FWDB test, driver dummy head bottomed out but most of injuries were superior to the injury of rigid wall test.

Simulation Analysis and Comparison of New Frontal Impact Tests (신 정면 충돌 시험의 시뮬레이션 비교 분석)

  • Jung, Kyungjin;Youn, Younghan;Park, Jiyang;Kim, Dongseup;Oh, Myoungjin;Kwak, Youngchan;Son, Changki;Shin, Jaekon;Lee, Eundok;Kwon, Hae Boung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.20-25
    • /
    • 2017
  • KNCAP is a program to evaluate the automobile safety, providing consumer vehicle safety assessment results. The safety evaluation tests are Frontal Impact, Offset Frontal Crash, Side Crash, Side Pole Crash, Rear Impact. This is the study of the offset frontal impact safety evaluation. Currently, IIHS is performing a small overlap test. NHTSA plans to implement the oblique moving deformable barrier test. Euro-NCAP plans to implement a mobile frontal impact test. Simulation is used to compare occupant behavior and injury. We have investigated whether the introduction of the test at KNCAP is necessary. The dummy model used in the simulation was the 50th percentile male Hybrid III dummy.

A Study on Car-to-car Frontal Impact Considering the Vehicle Compatibility (상호안전성을 고려한 차대차 정면 충돌 안전성 선행 연구)

  • Lee, Chang min;Shin, Jang ho;Kim, Hyun woo;Park, Kun ho;Park, Young joon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • In recent years, NCAP regulations of many countries have induced automaker to improve the vehicle crashworthiness. But, the current NCAP regulations don't cover all types of traffic accidents. And rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility. So, many countries have tried to develop the new crash test mode and update the present crash test mode. Especially, Euro NCAP has been developing a new impact protocol of the car-to-car frontal offset impact including the crash compatibility assessment. There are plans to introduce this new protocol in 2020, and it will be replaced the current Euro NCAP frontal offset impact. The test dummy in the front seats of this new test mode will be changed from 50% Hybrid-III male to 50% THOR male. This paper will address the vehicle responses, the occupant responses and the vehicle compatibility performance from a full vehicle crash test using the new car-to-car frontal offset test protocol of Euro NCAP.

A Safety Assessment on Light Weight Wheelchair Occupant in Frontal Crash (경량 휠체어 탑승자의 차량 전방충돌시 안전성 평가)

  • 김성민;김성재;강태건
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2003
  • In this study, for a safetv assessment of light weight wheelchair occupant in frontal crash, we tested a dynamic sled impact test. we carried out total 6 times test and impact speed was 20g/48 km/h. By using Hybrid III 50%ile male dummy, head injury criteria(HIC), neck flexion moment, neck axial tension force, neck shear force. chest acceleration, head, wheelchair and knee excursion were measured, we evaluated light weight wheelchair occupant safety by motion criteria(MC) which proposed in SAE J2249 and combined injury criteria(CIC) which is a voluntary standard(GM-IARV) of General Motors Co.. when we assumed that the maximum injury value in frontal crash was 100%, the result of motion criteria(MC) of wheelchair occupant was 52%, occupant upper body injury index(CIC) was 60.1%.

The Safety Assessment of Wheelchair Occupants in Road Passenger Vehicles with the Frontal Crash: a Computer Simulation (시뮬레이션 기법을 이용한 차량내 전동휠체어 탑승자의 전방 충돌시 안전에 관한 연구)

  • Lee, Young-Shin;Lee, Ki-Du;Lim, Hyun Kyoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1518-1526
    • /
    • 2005
  • With increasing need of transportation services for people with disabilities and the aged, wheelchairs are used as their assistive devices to participate in daily and recreational activities and as seats of motor vehicle. However, as wheelchairs are primarily designed fer mobility assistive devices, not for vehicle seats, wheelchair users may experience serious injury when they meet car crashes. To date, neither engineering guidance for a wheelchair mounting system on the vehicle floor nor safety assessment analysis by a car crash has been studied for the domestic users. In this paper, in accordance with the ANSVRESNA WC-19, a fixed vehicle mounted wheelchair occupant restraint system (FWORS), wheelchair integrated restraint system (WIRS), and wheelchair integrated x-bend restraint system (WIXRS) subjected to frontal impact (20 g, 48 U) were analyzed using compute. simulations for domestic users. We present surrogate wheelchair occupant safety by head injury criteria (HIC), motion criteria (MC), and combined injury criteria (CIC).

A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability (${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.

Compatibility for Proposed R.94 PDB Test (PDB 시험에 대한 충돌 상호 안전성)

  • Jang, Eun-Ji;Kim, Joseph;Beom, Hyen-Kyun;Kwon, Sung-Eun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • Currently various safety tests are being performed in many countries with growing interest in vehicle safety. However the vehicles which have good safety performance in these tests could not secure the good performance in real car to car accident. So new test protocol using progressive deformable barrier (PDB) was proposed by EEVC in Europe, NHTSA in USA and some vehicle manufacturers, etc. The target of PDB test is to control partner protection in addition to self-protection on the same test. The proposal is to update current ECE R.94 frontal ODB test. So barrier, impact speed, overlap are changed to avoid bottoming-out in the test configuration. In this paper 3 different tests (R.94, EuroNCAP and PDB test) were carried out using current production vehicles with same structure. The results of these tests were compared to understand PDB test. As a result PDB test shows the highest vehicle deceleration and dummy injury because PDB offers a progressive increase in stiffness in depth and height. However vehicle intrusion was affected with rather test velocity than stiffness of deformable barrier. PDB deformation data is used for partner protection assessment using PDB software and it shows that the test vehicle is rather not aggressive.

Statistical Review for USNCAP Front Crash Test Results in MY2011 (2011년 모델에 대한 정면 미국신차안전도평가 결과에 대한 통계적 분석)

  • Beom, Hyen-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.81-87
    • /
    • 2012
  • New car assessment program (NCAP) originated from USNCAP in 1979 has been implemented in several countries or markets, for instance USA, Europe, Korea, Japan, China and Australia. NCAP has contributed greatly to reduce accidental tolls. But recently, NCAP performance has no distinction between cars because manufacturer have been continuously developed to improve NCAP performance. Therefore, NHTSA announced new USNCAP protocol becoming effective from MY2011. NHTSA had carried out many NCAP tests based on the new test protocol and announced these test results. In this paper, USNCAP test results were reviewed by statistical method. This review was focused on passenger cars and frontal crash test results in order to investigate effect of changes in new NCAP protocol. There are two key changes, one is sited female dummy in passenger position, the other is enlarged to 4 scoring body regions in each dummy. Results of this review were summarized as followings. Performance in Passenger (12.5%) is lower than Driver's (50%) for number of 5 star vehicle. Neck injury criterion is dominant to NCAP star rating for both dummies in the mean sense. For standard deviation, chest deflection is showed largest value in driver dummy but neck injury criterion is showed for passenger's. DKAB and PKAB were equipped 28.1% and 6.2%, respectively. Consequently, the countermeasure for new USNCAP frontal crash test is essential to control well dummy kinematics with some safety features including KAB to reduce neck injuries.