• Title/Summary/Keyword: Frontal Cortex

Search Result 161, Processing Time 0.038 seconds

Neural Correlates and Electrodermal Activity Produced by Humor and Joy (유머와 기쁨에 따른 뇌 활성화와 말초의 피부전기 반응)

  • Suk Ji-A;Jang Eun-Hye;Lee Ok-Hyun;Lee Young-Chang;Sohn Jin-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.373-376
    • /
    • 2005
  • 본 연구에서는 뇌의 반응과 말초신경계의 변화를 통하여 유머와 기쁨의 긍정적인 정서의 구분이 가능한가를 밝히고자 하였다. fMRI와 말초신경계 반응 측정 실험 각각을 수행하는 동안, 유머와 기쁨정서를 유발하는 동영상 자극(2분)이 제시되었고, 실험이 끝난 후 심리적인 평가도 함께 수행되었다. fURI 실험은 boxcar design으로 한 session 내에 두 block으로 구성되었다. 말초신경계 반응실험에서는 안정상태와 정서상태에서의 피부전기 반응을 측정하였다. fMRI 결과, 유머자극과 기쁨자극 제시 시 공통적으로 precentral Cortex, temporal Cortex, precuneus 가 활성화 되었고, 유머자극은 기쁨자극에 비하여 우측 middle temporal cortex, 우측 inferior frontal cortex, 좌측 middle frontal cortex 에서 큰 활성화를 보였다. 피부전기 반응(EDA) 분석 결과 두 정서 모두 안정상태에 비하여 유의하게 증가하였고, 유머자극은 기쁨자극에 비하여 피부전도수준(SCL)과 피부전도반응의 수(NSCR)에서 유의하게 증가하는 것으로 나타났다.

  • PDF

An EEG-based Brain Mapping to Determine Mirror Neuron System in Patients with Chronic Stroke during Action Observation

  • Kuk, Eun-Ju;Kim, Jong-man
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.135-139
    • /
    • 2015
  • Purpose: The aim of this study was to compare EEG topographical maps in patients with chronic stroke after action observation physical training. Methods: Ten subjects were recruited from a medical hospital. Participants observed the action of transferring a small block from one box to another for 6 sessions of 1 minute each, and then performed the observed action for 3 minutes, 6 times. An EEG-based brain mapping system with 32 scalp sites was used to determine cortical reorganization in the regions of interest (ROIs) during observation of movement. The EEG-based brain mapping was comparison in within-group before and after training. ROIs included the primary sensorimotor cortex, premotor cortex, superior parietal lobule, inferior parietal lobule, superior temporal lobe, and visual cortex. EEG data were analyzed with an average log ratio in order to control the variability of the absolute mu power. The mu power log ratio was in within-group comparison with paired t-tests. Results: Participants showed activation prior to the intervention in all of the cerebral cortex, whereas the inferior frontal gyrus, superior frontal gyrus, precentral gyrus, and inferior parietal cortex were selectively activated after the training. There were no differences in mu power between each session. Conclusion: These findings suggest that action observation physical training contributes to attaining brain reorganization and improving brain functionality, as part of rehabilitation and intervention programs.

Ginsenoside Rb1 Modulates Level of Monoamine Neurotransmitters in Mice Frontal Cortex and Cerebellum in Response to Immobilization Stress

  • Lee, Sang-Hee;Hur, Jin-Young;Lee, Eun-Joo H.;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.482-486
    • /
    • 2012
  • Cerebral monoamines play important roles as neurotransmitters that are associated with various stressful stimuli. Some components such as ginsenosides (triterpenoidal glycosides derived from the Ginseng Radix) may interact with monoamine systems. The aim of this study was to determine whether ginsenoside Rb1 can modulate levels of the monoamines such as dihydroxyphenylalanine (DOPA), dopamine (DA), norepinephrine (NE), epinephrine (EP), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydorxytryptamine (5-HT), 5-hydroxindole-3-acetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP) in mice frontal cortex and cerebellum in response to immobilization stress. Mice were treated with ginsenoside Rb1 (10 mg/kg, oral) before a single 30 min immobilization stress. Acute immobilization stress resulted in elevation of monoamine levels in frontal cortex and cerebellum. Pretreatment with ginsenoside Rb1 attenuated the stress-induced changes in the levels of monoamines in each region. The present findings showed the anti-stress potential of ginsenoside Rb1 in relation to regulation effects on the cerebral monoaminergic systems. Therefore, the ginsenoside Rb1 may be a useful candidate for treating several brain symptoms related with stress.

LIGAND BINDING CHARACTERISTICS OF $K_2$- OPIOID RECEPTOR AND ITS ROLE IN REGULATION OF 〔$^3$H〕HISTAMINE RELEASE IN FRONTAL CORTEX OF THE RAT

  • Kim, Kee-Won-;Park, Kyu--Cho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.305-305
    • /
    • 1994
  • It has been shown that there are several subtypes of $\kappa$ opioid receptor, We have evaluated the properties of non-${\mu}$, non-$\delta$ binding of 〔$^3$H〕DIP, a nonselective opioid antagonist, in rat cortex membranes. Binding to ${\mu}$ and $\delta$ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. (-)Ethylketocyclazocine(EKC) inhibited 〔$^3$H〕DIP binding with Ki. of 70 nM. However, arylacetamides (U69593 and U50488H) gave little inhibition. Also, we have examined the opioid modulation of K$\^$+/(30 mM)-induced histamine release in rat frontal cortex slices labeled with 1-〔$^3$H〕histidine. The 〔$^3$H〕histamine release from cortex slices was inhibited by EKC, a $\kappa$$_1$-and $\kappa$$_2$-agonist, in a concentration-dependent manner(10 to 10,000 nM). The IC$\sub$50/ of EKC was 107 ${\pm}$ 6 nM. However, the $\delta$ receptor selective agonists, DPDPE and deltorphine II, ${\mu}$ receptor agonists, DAMGO and TAPS, $\kappa$$_1$-agonists, U69593 and U50488H, and $\varepsilon$-agonist, ${\beta}$-endorphin, did not inhibit histamine release even in micromoiar dose, indicating that ${\mu}$, $\delta$ or $\kappa$$_1$ receptors are not involved. The concentration-response curve of EKC was shifted to right in the presence of naloxone (300 nM), a ${\mu}$ preferential antagonist, norbinaltorphimine(300 nM), a $\kappa$$_1$ preferential antagonist and bremazocine(1 nM), a $\kappa$$_1$-agonist and $\kappa$$_2$-antagonist. These results suggest that $\kappa$$_2$ opioid receptor regulates histamine release in the frontal cortex of the rat.

  • PDF

Regional Cerebral Perfusion in Progressive Supranuclear Palsy (진행성 핵상 마비에서의 국소 뇌혈류)

  • Lee, Won-Yong;Lee, Kyung-Han;Lee, Ki-Hyeong;Yoon, Byung-Woo;Lee, Myung-Chul;Lee, Sang-Bok;Jeon, Beom-S.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.47-55
    • /
    • 1996
  • Progressive supranuclear palsy (PSP) is a parkinson-plus syndrome characterized clinically by supranuclear ephthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormality and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using $^{99m}Tc$-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex.

  • PDF

Characteristics of Central Noradrenergic Nervous System Response in SHR to Stimulation of Central ${\alpha}_2-Adrenoceptor$ (중추 ${\alpha}_2$-수용체 자극에 대한 선천성 고혈압쥐의 중추 노르아드레날린성 신경계 반응의 특성)

  • Chung, Hye-Joo;Oh, Uh-Taek;Ko, Kwang-Ho
    • YAKHAK HOEJI
    • /
    • v.33 no.6
    • /
    • pp.333-338
    • /
    • 1989
  • It has been postulated that abnormal characteristics of central noradrenergic nervous system has been implicated in the development and maintenance of hypertension in several modes of experimental hypertension including spontaneously hypertensive rats (SHR). In the present study, we attempt to determine if abnormal characteristics of central noradrenergic nervous system in SHR is caused by genetic factors or hypertensive phenomena by evaluating the changes of central adrenoceptors after long-term treatment of clonidine. Animals were divided into three groups; (1) 14 week-old SHR; (2) age-matched normotensive Wistar rats (NW); (3) DOCA-Salt induced hypertensive rats (DS). Clonidine (100 ug/kg) or vehicle was injected intraperitonealy twice a day for 15 days. Changes of ${\alpha}_1-$ and ${\alpha}_2-receptor$ desities following clonidine treatment were determiend in frontal corte, medulla oblongata and hypothalamus using 3H-WB4101 and 3H-clonidine, respectively. Densities of ${\alpha}_1$ and ${\alpha}_2-receptors$ following clonidine treatment were not changed in frontal cortex and medulla oblongate of SHR as well as DS, but increased in frontal cortex of NW and decreased in medulla oblongata of NW. On the other hand, densities of ${\alpha}_1-receptors$ were increased and densities of ${\alpha}_2-receptors$ were not changed in hypothalamus of SHR but densities of ${\alpha}_1-$ and ${\alpha}_2-receptors$ were decreased in hypothalamus of DS as well as NW. These results suggest that such differences in frontal cortex and medulla oblongata of SHR may be results of hypertensive phenomena whereas those in hypothalamus may be relevant to genetic factors of SHR.

  • PDF

Dysfunctional Social Reinforcement Processing in Disruptive Behavior Disorders: An Functional Magnetic Resonance Imaging Study

  • Hwang, Soonjo;Meffert, Harma;VanTieghem, Michelle R.;Sinclair, Stephen;Bookheimer, Susan Y.;Vaughan, Brigette;Blair, R.J.R.
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.449-460
    • /
    • 2018
  • Objective: Prior functional magnetic resonance imaging (fMRI) work has revealed that children/adolescents with disruptive behavior disorders (DBDs) show dysfunctional reward/non-reward processing of non-social reinforcements in the context of instrumental learning tasks. Neural responsiveness to social reinforcements during instrumental learning, despite the importance of this for socialization, has not yet been previously investigated. Methods: Twenty-nine healthy children/adolescents and 19 children/adolescents with DBDs performed the fMRI social/non-social reinforcement learning task. Participants responded to random fractal image stimuli and received social and non-social rewards/non-rewards according to their accuracy. Results: Children/adolescents with DBDs showed significantly reduced responses within the caudate and posterior cingulate cortex (PCC) to non-social (financial) rewards and social non-rewards (the distress of others). Connectivity analyses revealed that children/adolescents with DBDs have decreased positive functional connectivity between the ventral striatum (VST) and the ventromedial prefrontal cortex (vmPFC) seeds and the lateral frontal cortex in response to reward relative to non-reward, irrespective of its sociality. In addition, they showed decreased positive connectivity between the vmPFC seed and the amygdala in response to non-reward relative to reward. Conclusion: These data indicate compromised reinforcement processing of both non-social rewards and social non-rewards in children/adolescents with DBDs within core regions for instrumental learning and reinforcement-based decision-making (caudate and PCC). In addition, children/adolescents with DBDs show dysfunctional interactions between the VST, vmPFC, and lateral frontal cortex in response to rewarded instrumental actions potentially reflecting disruptions in attention to rewarded stimuli.

Motor Areas of the Cerebral Cortex-New Vistas

  • Tanji, Jun
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 1994
  • On the basis of morphological and functional studies, it is now established that there exist multiple motor representation areas in the frontal lobe of subhuman primates. Recent development of analysis on cerebral critical organization in human subjects, utilizing novel techniques of PET and MRI, provides evidence of corresponding motor areas. Each area has its unique sources of inputs from the thalamus and from other parts of the cerebral cortex. To understand functional roles of these multiple motor areas, it is necessary to study neural activity while subjects are performing a variety of motor tasks. In view of high accuracy in spatial and temporal resolution, the analysis of single cells in relation to specific aspects of motor behavior remains to be a powerful research technique. It is with this technique that a number of novel concepts on functional roles of multiple motor areas have been proposed.

  • PDF

Effects of Head Acupuncture Versus Upper and Lower Limbs Acupuncture on Signal Activation of Blood Oxygen Level Dependent(BOLD) fMRI on the Brain and Somatosensory Cortex (두침과 상하지 침자극이 뇌와 뇌의 체성감각피질에 미치는 영향에 대한 fMRI Study)

  • Park, Jung-Mi;Gwak, Ja-Young;Cho, Seung-Yeon;Park, Seong-Uk;Jung, Woo-Sang;Moon, Sang-Kwan;Ko, Chang-Nam;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup;Jang, Geon-Ho;Bang, Jae-Seung
    • Journal of Acupuncture Research
    • /
    • v.25 no.5
    • /
    • pp.151-165
    • /
    • 2008
  • Objectives : To evaluate the effects of Head Acupuncture versus Upper and Lower Limbs Acupuncture on signal activation of Blood Oxygen Level Dependent(BOLD) fMRI on the Brain and Somatosensory Cortex. Subjects and Methods : 10 healthy normal right-handed female volunteer were recruited. The average age of the 10 subjects was 30 years old. The BOLD functional MRI(fMRI) signal characteristics were determined during tactile stimulation was conducted by rubbing 4 acu-points in the right upper and lower limbs($LI_1$, $LI_{10}$, $LV_3$, $ST_{36}$). After stimulation of Head Acupuncture in Sishencong($HN_1$), $GB_{18}$, $GB_9$, $TH_{20}$ of Left versus Upper and Lower Limbs Acupuncture($LI_1$, $LI_{10}$, $LV_3$, $ST_{36}$ of Right) and took off needles. Then the BOLD fMRI signal characteristics were determined at the same manner. Results : 1. When touched with cotton buds(sensory stimulation), left Parietal Lobe, Post-central Gyrus, primary somatosensory cortex(BA 1, 2, 3), and primary motor cortex(BA 4) were mainly activated. When $ST_{36}$ was stimulated, Frontal Lobe, Parietal Lobe, Cerebellum, and Posterior Lobe as well as Inter-Hemispheric displaying a variety of regions. 2. In signal activation before and after Head Acupuncture reaction, it showed signal activation after removing the acupuncture needle and right Somatosensory Association Cortex, Postcentral Gyrus, and Parietal Lobe were more activated. 3. In reactions of before and after Upper and Lower Limb Acupuncture, it also showed signal activation after removing the acupuncture needle and bilateral Occipital Lobe, Lingual Gyrus, visual association cortex, and Cerebellum were activated. 4. After acupuncture stimulation, In Upper and Lower Limb Acupuncture Group, left frontal Lobe, Precentral Gyrus and Bilateral parietal lobe, Postcentral Gyrus and Primary Somatosensory Cortex(BA 2) were activated. In Head Acupuncture Group, which has most similar activation regions, but especially right Pre-Post central Gyrus, Primary Somatosensory Cortex(BA 3), Primary Motor Cortex, frontal Lobe and Parietal Lobe were activated. Conclusions : When sensory stimulation was done with cotton buds on four acup-points($LI_1$, $LI_{10}4, $LV_3$, $ST_{36}$), while bilaterally activated, contralateral sense was more dominant. It showed consistency with cerebral cortex function. When $ST_{36}$ was stimulated Frontal Lobe, Parietal Lobe, Cerebellum, Posterior Lobe as well as Inter-Hemispheric were stimulated. In Head Acupuncture, it showed more contralateral activation after acupuncture. In Upper and Lower Limb Acupuncture, it showed typically contralateral activation and deactivation of limbic system after acupuncture stimulation. Therefore, there were different fMRI BOLD signal activation reaction before and after Head Acupuncture vs Upper and Lower Limb Acupuncture which might be thought to be caused by acu-points' sensitivity and different sensory receptor to response acupuncture stimulation.

  • PDF

Role of Dopamine Receptors on Electroencephalographic Changes Produced by Repetitive Apomorphine Treatments in Rats

  • Jang, Hwan-Soo;Kim, Ji-Young;Kim, Sang-Heon;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.147-151
    • /
    • 2009
  • Repeated psychostimulants induce electroencephalographic (EEG) changes, which reflect adaptation of the neural substrate related to dopaminergic pathways. To study the role of dopamine receptors in EEG changes, we examined the effect of apomorphine, the dopamine D1 receptor antagonist, SCH-23390, and the D2 receptor antagonist, haloperidol, on EEG in rats. For single and repeated apomorphine treatment groups, the rats received saline or apomorphine for 4 days followed by a 3-day withdrawal period and then apomorphine (2.5 mg/kg, i.p.) challenge after pretreatment with saline, SCH-23390, or haloperidol on the day of the experiment. EEGs from the frontal and parietal cortices were recorded. On the frontal cortex, apomorphine decreased the power of all the frequency bands in the single treatment group, and increased the theta (4.5 ${\sim}$ 8 Hz) and alpha (8 ${\sim}$ 13 Hz) powers in the repeated treatment group. Changes in both groups were reversed to the control values by SCH-23390. On the parietal cortex, single apomorphine treatment decreased the power of some frequency bands, which were reversed by haloperidol but not by SCH-23390. Repeated apomorphine treatment did not produce significant changes in the power profile. These results show that adaptation of dopamine pathways by repeated apomorphine treatment could be identified with EEG changes such as increases in theta and alpha power of the frontal cortex, and this adaptation may occur through changes in the D1 receptor and/or the D2 receptor.