• 제목/요약/키워드: Front impact

검색결과 290건 처리시간 0.032초

내부 폭발하중을 받는 철근콘크리트 코어의 연쇄붕괴 해석 (Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading)

  • 김한수;안재균;안효승
    • 콘크리트학회논문집
    • /
    • 제26권6호
    • /
    • pp.715-722
    • /
    • 2014
  • 본 논문에서는 철근콘크리트 코어 구조물의 내부폭발 효과를 폭발이나 충격해석에 특화되어 있는 하이드로코드인 Ansys Autodyn을 이용하여 조사하였다. 내부폭발의 경우 폭발하중의 반사효과로 인해 더욱 큰 파괴를 일으킬 수 있다. 그러므로, 본 논문에서는 UFC 3-340-02 를 사용하여 내부 폭발현상을 입증하였다. 추가적으로 Autodyn을 사용한 해석에 관하여 UFC에서 예제로 제시하는 폭발하중의 반사에 관한 실험 결과를 비교하여 Autodyn이 내부폭발 효과를 해석하는데 적합함을 증명하였다. 나아가, 초고층빌딩에서 가장 중요한 부분 중의 하나의 코어 구조의 붕괴메커니즘을 Autodyn을 사용하여 해석하였다. 내부폭발이 코어에 충격을 가할 때, 코어는 모서리와 폭발 정면 부분이 대부분 피해를 입었다. 그러므로, 코어 벽체가 피해를 입게 된다면 코어 구조물의 연쇄붕괴가 발생할 수 있다.

주동형태 변화에 따른 아파트 단지내 기류분석 및 단위주호의 환기성능에 관한 연구 (A Study on the Air Flow Characteristics in an Apartment Complex and Ventilation Performance of an Individual Unit for Improving IAQ)

  • 이정현;이승희;김태연
    • KIEAE Journal
    • /
    • 제5권3호
    • /
    • pp.11-16
    • /
    • 2005
  • The recent trends of high-density and high-rise in apartment housing have caused the problems of decrease in ventilation rates and increase of indoor pollutant contaminants. SHS(Sick House Syndrome) has now become a major issue and threats the health of residents. To solve these indoor air problems, increase in ventilation rate is considered as one of the most efficient approach. Thus, the recent housing development is pursuing improvement in the site design and the layout of apartment building blocks to promote natural ventilation is now investigated as one of the fundamental solutions. This study was focused on the air flow characteristics of outdoor environment in an apartment complex to keep the pollutants out of the site. Age of air and pressure difference have been used as indices of the outdoor air quality. Four different types of apartment building layouts have been analyzed by CFD simulation. This study again selected a real apartment housing complex as a case study model. By analyzing the pressure differences between the front and rear of an apartment building block, the ventilation performance in each individual unit was evaluated, and its impact on ventilation performance is investigated by analyzing the stagnant air around the apartment building blocks. During this process, existing patterns of apartment housing layout have been evaluated, and the most appropriate site layout has been chosen to analyze the outdoor airflow patterns. Based on the analysis of airflow patterns of site layout, the possibilities of improving ventilation performance of an individual apartment housing is proposed.

광공진 현상을 이용한 입체 영상센서 및 신호처리 기법 (Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing)

  • 박용화;유장우;박창영;윤희선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Multi-objective shape optimization of tall buildings considering profitability and multidirectional wind-induced accelerations using CFD, surrogates, and the reduced basis approach

  • Montoya, Miguel Cid;Nieto, Felix;Hernandez, Santiago
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.355-369
    • /
    • 2021
  • Shape optimization of tall buildings is an efficient approach to mitigate wind-induced effects. Several studies have demonstrated the potential of shape modifications to improve the building's aerodynamic properties. On the other hand, it is well-known that the cross-section geometry has a direct impact in the floor area availability and subsequently in the building's profitability. Hence, it is of interest for the designers to find the balance between these two design criteria that may require contradictory design strategies. This study proposes a surrogate-based multi-objective optimization framework to tackle this design problem. Closed-form equations provided by the Eurocode are used to obtain the wind-induced responses for several wind directions, seeking to develop an industry-oriented approach. CFD-based surrogates emulate the aerodynamic response of the building cross-section, using as input parameters the cross-section geometry and the wind angle of attack. The definition of the building's modified plan shapes is done adopting the reduced basis approach, advancing the current strategies currently adopted in aerodynamic optimization of civil engineering structures. The multi-objective optimization problem is solved with both the classical weighted Sum Method and the Weighted Min-Max approach, which enables obtaining the complete Pareto front in both convex and non-convex regions. Two application examples are presented in this study to demonstrate the feasibility of the proposed strategy, which permits the identification of Pareto optima from which the designer can choose the most adequate design balancing profitability and occupant comfort.

S-BRT 운행행태를 고려한 저상버스의 정차시간 예측모형 (A Estimation of Dwell Time of Low-floor Buses considering S-BRT Operation Behavior)

  • 신소명;이수범;김영찬;박신형;유연승;최정훈
    • 한국안전학회지
    • /
    • 제36권1호
    • /
    • pp.72-79
    • /
    • 2021
  • This basic study introduces the concept of S-BRT and develops dwell time estimation models that consider road geometry and S-BRT characteristics for a signal operation strategy to meet the S-BRT's operational goal of high speed and punctuality. Field surveys of low-floor buses similar in shape to S-BRTs and data collection of passengers, station elements, vehicle elements, and other factors that can affect stop times were used in a regression analysis to establish statistically significant dwell time estimation models. These dwell time estimation models are developed by categorizing according to the locations of the signal or sidewalk that have the most impact on the dwell time. In this way, the number of people boarding and alighting the bus at the crowded door and the number of people boarding and alighting the bus at the front door considering the internal congestion was analyzed to affect the dwell time. The estimation dwell time models in this study can be used in the establishment of strategies that provide priority signals to S-BRTs.

WRF 모형에서 한반도 여름철 강수 예측에 모의영역이 미치는 영향 (Effect of Model Domain on Summer Precipitation Predictions over the Korean Peninsula in WRF Model)

  • 김형규;이혜영;김주완;이승우;부경온;이송이
    • 대기
    • /
    • 제31권1호
    • /
    • pp.17-28
    • /
    • 2021
  • We investigated the impact of domain size on the simulated summer precipitation over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two different domains are integrated up to 72-hours from 29 June 2017 to 28 July 2017 when the Changma front is active. The domain sizes are adopted from previous RDAPS (Regional Data Assimilation and Prediction System) and current LDAPS (Local Data Assimilation and Prediction System) operated by the Korea Meteorological Administration, while other model configurations are fixed identically. We found that the larger domain size showed better prediction skills, especially in precipitation forecast performance. This performance improvement is particularly noticeable over the central region of the Korean Peninsula. Comparisons of physical aspects of each variable revealed that the inflow of moisture flux from the East China Sea was well reproduced in the experiment with a large model domain due to a more realistic North Pacific high compared to the small domain experiment. These results suggest that the North Pacific anticyclone could be an important factor for the precipitation forecast during the summer-time over the Korean Peninsula.

해안사구 지형변화에 대한 해안림의 영향: 소황리 전사구를 사례로 (Impact of Coastal Forests on Geomorphological Changes of Coastal Dunes: A Case of the Sohawang-ri Foredune, Chungnam Province)

  • 김윤미;공학양;최광희
    • 한국지형학회지
    • /
    • 제28권1호
    • /
    • pp.51-66
    • /
    • 2021
  • This study shows that coastal sand dunes are negatively affected by coastal forests. In South Korea, planting pine trees on the dunes has been carried out to stabilize the dune landscapes and protect residential areas from coastal disasters since the 20th century. However, this strategy could reduce the resilience of dunes. In this study, we selected three monitoring sites with automated weather stations to compare the geomorphological and environmental characteristics between tree-covered and grass-covered dunes at Sohwang-ri, Boryeong-si, Chungnam Province for three years. In addition, we monitored the rates of erosion and deposition using eight pins along the dune crests. We found that the forest affected both wind velocity and direction, resulting in decreased blown sand supply to the dunes in front of the forest. The velocity of the strong winds faster than 5 m/s diminished to 10%-30% of the control sites, and the direction of northwesterly wind were skewed to the north by about 6°. Sand deposition occurred at about 15-20 m away from the pine forest and the amount was only 1/10 of the deposition within the grass-covered dunes. This study suggests that planting trees in coastal dunes is an undesirable strategy with negative impacts on the landscape management.

계절 Mann-Kendall 검정을 이용한 소양호의 장기 수질 경향성 분석 (Long-Term Water Quality Trend Analysis of Lake Soyang Using Seasonal Mann-Kendall Test)

  • 염호정;안용빈;정세윤;김윤석;김범철;홍은미
    • 한국농공학회논문집
    • /
    • 제66권2호
    • /
    • pp.25-34
    • /
    • 2024
  • The long-term monitoring of the Soyang Lake's water quality, covering 25% of the North Han River watershed, is crucial for effective management of both lake water quality and pollution sources in the broader region. This study utilized continuous monitoring data from the front of the Soyang Dam spanning 2003 to 2022, aiming to analyze trends and provide foundational insights for water quality management. Results revealed a slightly poor grade (IV) for total nitrogen (T-N) in both surface and mid-depth layers, indicating a need for concentrated T-N management. Trend analyses using the Mann-Kendall test and Sen's Slope depicted a decreasing trend in total phosphorus (T-P) for both layers, attributed to non-point source pollution reduction projects initiated after the Soyang Lake's designation as a pollution control area in 2007. The LOWESS analysis showed a T-P increase until 2006, followed by a decrease, influenced by the impact of Typhoon Ewiniar in that year. This 20-year overview establishes a comprehensive understanding of the Soyang Lake's water quality and trends, allowing for a seasonal and periodical analysis of water quality changes. The findings underscore the importance of continued monitoring and management strategies to address evolving water quality issues in the Soyang Lake over time.

Impact of livestock industry on climate change: Case Study in South Korea - A review

  • Sun Jin Hur;Jae Min Kim;Dong Gyun Yim;Yohan Yoon;Sang Suk Lee;Cheorun Jo
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.405-418
    • /
    • 2024
  • In recent years, there has been a growing argument attributing the primary cause of global climate change to livestock industry, which has led to the perception that the livestock industry is synonymous with greenhouse gas (GHG) emissions. However, a closer examination of the global GHG emission by sector reveals that the energy sector is responsible for the majority, accounting for 76.2% of the total, while agriculture contributes 11.9%. According to data from the Food and Agriculture Organization of the United Nations (FAO), the total GHG emissions associate with the livestock supply chain amount to 14.5%. Within this, emissions from direct sources, such as enteric fermentation and livestock manure treatment, which are not part of the front and rear industries, represent only 7%. Although it is true that the increase in meat consumption driven by global population growth and rising incomes, has contributed to higher methane (CH4) emissions resulting from enteric fermentation in ruminant animals, categorizing the livestock industry as the primary source of GHG emissions oversimplifies a complex issue and disregards objective data. Therefore, it may be a misleading to solely focus on the livestock sector without addressing the significant emissions from the energy sector, which is the largest contributor to GHG emissions. The top priority should be the objective and accurate measurement of GHG emissions, followed by the development and implementation of suitable reduction policies for each industrial sector with significant GHG emissions contributions.

자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구 (Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag)

  • 이일권;김영규;문학훈
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.102-106
    • /
    • 2012
  • 이 논문의 목적은 현장에서 발생되는 자동차 에어백 시스템의 고장사례를 모아 분석하고 연구하는 것이다. 첫 번째 사례에서는 에어백 시스템의 클럭 스프링과 에어 백 모듈 사이 배선 핀의 납땜부가 이탈되어, 배선 접촉불량에 의해 핀이 흔들릴 때마다 에어백의 작동불량 현상이 발생되는 것을 확인하였다. 두 번째 사례에서는 에어백 컴퓨터 내부의 단품 소자의 손상으로 인해 에어백 작동불량 현상이 발생된 것을 확인하였다. 세 번째 사례에서는 조수석 시트 벨트 프리텐셔너(pre-tensioner)의 내부 핀과 저항을 연결해 주는 납땜부 이탈로 인해 에어백 경고등이 점등된 것을 확인하였다. 네 번째 사례에서는 승용자동차가 화물자동차의 후면을 추돌하였을 때 때 범퍼는 상대편 차량보다 낮아 아래로 끼어들게 된다. 이 때 사고의 충격은 차량의 프레임부분에 전달되지 않기 때문에 충격센서가 설치된 프레임부분에 충격이 적게 전달되어 에어백이 작동하지 않은 것을 확인하였다.