• Title/Summary/Keyword: Front and Rear Vehicle monitoring

Search Result 9, Processing Time 0.024 seconds

Front and Rear Vehicle Monitoring System using Ultrasonic Sensors (초음파 센서를 이용한 차량 전·후방 감시 시스템)

  • Choi, Hun;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1125-1132
    • /
    • 2012
  • The researches on driver assistance systems that can prevent an accident have been actively performed due to social issues of traffic accidents with development of vehicle industry in recent. It is required for researchers to develope systems which assist driver's perception and judgment when considering that over 70% of traffic accidents occur by drivers' carelessness and 75% of the total accidents occur at the speed of less 29km per hour. In this paper, we implemented a front and rear vehicle monitoring system that monitors distance from a vehicle to obstacles in real-time at the low-speed or back-ward driving. The proposed system consists of ultrasonic sensors of high angle and wide angle of beam spread, ATmega128, and DSP processor.

A Front and Rear Vehicle Monitoring System Using Ultrasonic Sensors (초음파 센서를 이용한 차량 전.후방 감시 시스템)

  • Sim, Jong-Hwan;Choi, Hun;Jang, Si-Ung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.347-350
    • /
    • 2012
  • The researches on driver assistance systems that can prevent an accident have been actively performed due to social issues of traffic accidents with development of vehicle industry in recent. It is required for researchers to develope systems which assist driver's perception and judgment when considering that over 70% of traffic accidents occur by drivers' carelessness and 75% of the total accidents occur at the speed of less 29km per hour. In this paper, we implemented a front and rear vehicle monitoring system that monitors distance in real-time from a vehicle to obstacles at the low-speed or back-ward driving. The implemented system consists of a high angle ultrasonic sensor with distance detection of 10m and 10-degree angle, a wide angle ultrasonic sensor with the detection distance of 3m and a 180-degree, and a ATmega128 chip of ATmel company.

  • PDF

Optical Vehicle to Vehicle Communications for Autonomous Mirrorless Cars

  • Jin, Sung Yooun;Choi, Dongnyeok;Kim, Byung Wook
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • Autonomous cars require the integration of multiple communication systems for driving safety. Many carmakers unveil mirrorless concept cars aiming to replace rear and sideview mirrors in vehicles with camera monitoring systems, which eliminate blind spots and reduce risk. This paper presents optical vehicle-to-vehicle (V2V) communications for autonomous mirrorless cars. The flicker-free light emitting diode (LED) light sources, providing illumination and data transmission simultaneously, and a high speed camera are used as transmitters and a receiver in the OCC link, respectively. The rear side vehicle transmits both future action data and vehicle type data using a headlamp or daytime running light, and the front vehicle can receive OCC data from the camera that replaces side mirrors so as not to prevent accidents while driving. Experimental results showed that action and vehicle type information were sent by LED light sources successfully to the front vehicle's camera via the OCC link and proved that OCC-based V2V communications for mirrorless cars can be a viable solution to improve driving safety.

An Algorithm for Segmenting the License Plate Region of a Vehicle Using a Color Model (차량번호판 색상모델에 의한 번호판 영역분할 알고리즘)

  • Jun Young-Min;Cha Jeong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.21-32
    • /
    • 2006
  • The license plate recognition (LPR) unit consists of the following core components: plate region segmentation, individual character extraction, and character recognition. Out of the above three components, accuracy in the performance of plate region segmentation determines the overall recognition rate of the LPR unit. This paper proposes an algorithm for segmenting the license plate region on the front or rear of a vehicle in a fast and accurate manner. In the case of the proposed algorithm images are captured on the spot where unmanned monitoring of illegal parking and stowage is performed with a variety of roadway environments taken into account. As a means of enhancing the segmentation performance of the on-the-spot-captured images of license plate regions, the proposed algorithm uses a mathematical model for license plate colors to convert color images into digital data. In addition, this algorithm uses Gaussian smoothing and double threshold to eliminate image noises, one-pass boundary tracing to do region labeling, and MBR to determine license plate region candidates and extract individual characters from the determined license plate region candidates, thereby segmenting the license plate region on the front or rear of a vehicle through a verification process. This study contributed to addressing the inability of conventional techniques to segment the license plate region on the front or rear of a vehicle where the frame of the license plate is damaged, through processing images in a real-time manner, thereby allowing for the practical application of the proposed algorithm.

Applying a Two-channel Video Streaming Technology Front and Rear Vehicle Wireless Video Monitoring System (2채널 영상 스트리밍 기술을 적용한 차량용 전. 후방 무선 영상 모니터링 시스템)

  • Na, HeeSu;Won, YoungJin;Yoon, JungGeun;Lee, SangMin;Ahn, MyeongIl;Kim, DongHyun;Moon, JongHoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.210-216
    • /
    • 2014
  • In this paper, it was proposed to develop front and rear image monitoring system for vehicle that help a driver to cope with urgent situation about a dangerous element. When parking a vehicle, the risk factors to be formed by the dead zone can be resolved by using anterior and posterior cameras of the vehicle. In embedded system environment, a SoC(System on Chip) and two high-resolution CMOS (Complementary metal-oxide-semiconductor) image sensors were used to transfer two high-resolution image data through he TCP/ IP-based network. To transfer image data through he TCP/ IP-based network, the images received by two cameras were compressed by using H.264 and they were transmitted with wireless method(Wi-Fi) by using real-time transport protocol (Real-time Transport Protocol). Transmission loss, transmission delay and transmission limit were solved in wireless (Wi-Fi) environment and the bit-rate of two image data compressed by H.264 was adjusted. And the system for the optimal transmission in wireless (Wi-Fi) environment was materialized and experimented.

Vehicle Collision Avoidance Sensor with Interference Immunity to Own Transmitted Signal (자차 송신기 신호 간섭회피 기능을 갖는 차량의 충돌방지 센서)

  • Choi, Kyoo-Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.433-438
    • /
    • 2013
  • Interference reduction method of vehicle collision avoidance sensor which is used for the low speed electric vehicle has been investigated. Various methods were attempted for the vehicle collision avoidance distance sensor, which received a transmitted signal from a front driving vehicle to measure the distance between two vehicles, to avoid interference by the own transmitter signal toward the rear following vehicle. In this study, -12dB of interference cancellation ratio was realized by using the phase cancellation method to the transmitted signal from the own vehicle. Proposed phase cancellation method is regarded to have the advantage of continuous monitoring in comparison to the conventional time sharing transmitting and receiving method.

Design and Implementation of an Around View Monitoring System on MOST150 Network (MOST150 네트워크 기반 차량 주변 감시 시스템의 설계 및 구현)

  • Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2765-2770
    • /
    • 2014
  • Rear view cameras which help to park or to drive backward has been distributed through after-market, but it is inconvenient because they do not provide views of left, right and front sides. Around view monitoring(AVM) systems which can monitor around vehicle at a glance have been developed and equipped by vehicle vendor but systematic studies on these systems is lack. While the AVM system which equipped on Infiniti cars of Nissan is adequate to monitor around vehicle at a glance, it has disadvantages that additional cabling because of using analog cables is required and image quality is lowered due to EMI/EMC intervention. The around view monitoring system implemented in this paper has advantages that there are no EMI/EMC problems because of using optical network and that cabling is simple because of using plug-and-play ways. Additionally, an advantage of MOST150 network is that camera nodes and display node can be easily installed in the form of plug-and-play.

Design and Implementation of 4-sided Monitoring System providing Bird's Eye View in Car PC Environment (Car PC 환경에서 Bird's Eye View를 제공하는 4SM (4-Sided Monitoring) 시스템 설계 및 구현)

  • Yu, Young-Ho;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.153-159
    • /
    • 2012
  • Driver's view has blind spot of automobile surroundings due to physical components of automobile architecture. Obstacles on blind spot are the cause of car destruction and car accidents. Cars which produced in recent have obstacle detection sensors and rear view cameras which provide information of obstacles on the blind sopt, and have also AVM(Around View Monitoring) which provides automobile surroundings for driver's safe driving. During a low-speed travel while parking or moving in a narrow street, a driver get help for safe driving by taking information of automobile surroundings using the above-mentioned devices. In this paper, we present a design and implementation of a 4-sided monitoring (4SM) system, which helps a driver see an integrated view of a vehicle's perimeter at a glance, using a car PC connected to four cameras installed on the front, rear, left, and right sides.

Design Android-based image processing system using the Around-View (안드로이드 기반 영상처리를 이용한 Around-View 시스템 설계)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.421-424
    • /
    • 2014
  • Currently, car black box, and CCTV products, such as image processing are prevalent on the market giving convenience to users.In particular, the black box of the driver driving a vehicle accident that occurred at the time to help identify the cause of the accident is gaining. Black box, the front or rear of the vehicle can check the image only. Because of the angle of view of the driver's vision or the black box can not determine a non-scene. In order to solve this problem by a more advanced system, the black box AVM (Around-View Monitoring) systems have been developed. AVM system to the vehicle's top-view images obtained before and after, left and right of the image, ie, $360^{\circ}$ image of the vehicle can be secured. AVM system must be installed on the vehicle, a desktop that you can acquire images Cling conditions. In this paper, we propose an Android-based tablet using the AVM system of the vehicle can achieve a $360^{\circ}$ image you want to design the system.

  • PDF