• Title/Summary/Keyword: Front Tracking

Search Result 146, Processing Time 0.027 seconds

A Proposal of an LOS Guidance System of a Ship for Path Following (선박의 항로추종을 위한 LOS 가이던스 시스템의 제안)

  • Kim Jonghwa;Lee Byungkyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.363-368
    • /
    • 2005
  • This paper proposes an LOS(line-of-sight) guidance system of a ship for path following. From the viewpoint of a control configuration, guidance is a special type of compensation algorithm that is placed in front of the controller to accomplish navigational objects. A guidance system generates a reference trajectory for trajectory tracking or path control and decides the desired velocity, position and heading angle. A control system executes commands based on a reliable guidance law during navigation. An LOS vector from the vessel to a point on the path between two way-points in straight-line navigation or a point among turning circle in turning navigation is selected, and then a heading angle is calculated to converge the desired path based on the LOS vector. The LOS guidance law is defined for the straight-line and the turning circle, respectively. The effectiveness of the suggested LOS guidance system is assured through computer simulation.

WEB FRONT-END COMPUTING RELATIONAL DATABASE SYSTEM FOR ITEM-LEVEL PRELIMINARY HIGHWAY COST ESTIMATES

  • Jui-Sheng Chou ;James T. O'Connor ;Khali R. Persad ;Wai Kiong Chong
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.509-514
    • /
    • 2005
  • In recent years, use of the web technologies and on-line process has immensely swapped single-user platform practice. This study attempted to develop preliminary cost estimating program by means of Web technologies based on statistical modeling results. A prototype Web-based Preliminary Item-Level Cost Estimating System (WBPILCES) using open source software was developed as an on-line estimating tool in this research. The primary objective is to study the possible flexibility of implementing a centralized information system that will be maintained by the Texas Department of Transportation (TxDOT) IT division. The full-scale deployment of proposed information architecture is expected to seamlessly integrate with legacy database system currently used by TxDOT so as to streamline data storage, cost growth tracking and estimates documentation.

  • PDF

Realtime Facial Expression Representation Method For Virtual Online Meetings System

  • Zhu, Yinge;Yerkovich, Bruno Carvacho;Zhang, Xingjie;Park, Jong-il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.212-214
    • /
    • 2021
  • In a society with Covid-19 as part of our daily lives, we had to adapt ourselves to a new reality to maintain our lifestyles as normal as possible. An example of this is teleworking and online classes. However, several issues appeared on the go as we started the new way of living. One of them is the doubt of knowing if real people are in front of the camera or if someone is paying attention during a lecture. Therefore, we encountered this issue by creating a 3D reconstruction tool to identify human faces and expressions actively. We use a web camera, a lightweight 3D face model, and use the 2D facial landmark to fit expression coefficients to drive the 3D model. With this Model, it is possible to represent our faces with an Avatar and fully control its bones with rotation and translation parameters. Therefore, in order to reconstruct facial expressions during online meetings, we proposed the above methods as our solution to solve the main issue.

  • PDF

Analysis of RTM Process Using the Extended Finite Element Method (확장 유한 요소 법을 적용한 RTM 공정 해석)

  • Jung, Yeonhee;Kim, Seung Jo;Han, Woo-Suck
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.363-372
    • /
    • 2013
  • Numerical simulation for Resin Transfer Molding manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions. Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with a simple channel flow model. Several application examples are analyzed to demonstrate ability of this method.

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.

A Path-Tracking Control of Optically Guided AGV Using Neurofuzzy Approach (뉴로퍼지방식 광유도식 무인반송차의 경로추종 제어)

  • Im, Il-Seon;Heo, Uk-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.723-732
    • /
    • 2001
  • In this paper, the neurofuzzy controller of optically guided AGV is proposed to improve the path-tracking performance A differential steered AGV has front-side and rear-side optical sensors, which can identify the guiding path. Due to the discontinuity of measured data in optical sensors, optically guided AGVs break away easily from the guiding path and path-tracking performance is being degraded. Whenever the On/Off signals in the optical sensors are generated discontinuously, the motion errors can be measured and updated. After sensing, the variation of motion errors can be estimated continuously by the dead reckoning method according to left/right wheel angular velocity. We define the estimated contour error as the sum of the measured contour in the sensing error and the estimated variation of contour error after sensing. The neurofuzzy system consists of incorporating fuzzy controller and neural network. The center and width of fuzzy membership functions are adaptively adjusted by back-propagation learning to minimize th estimated contour error. The proposed control system can be compared with the traditional fuzzy control and decision system in their network structure and learning ability. The proposed control strategy is experience through simulated model to check the performance.

  • PDF

Real-time Hand Region Detection and Tracking using Depth Information (깊이정보를 이용한 실시간 손 영역 검출 및 추적)

  • Joo, SungIl;Weon, SunHee;Choi, HyungIl
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • In this paper, we propose a real-time approach for detecting and tracking a hand region by analyzing depth images. We build a hand model in advance. The model has the shape information of a hand. The detecting process extracts out moving areas in an image, which are possibly caused by moving a hand in front of a camera. The moving areas can be identified by analyzing accumulated difference images and applying the region growing technique. The extracted moving areas are compared against a hand model to get justified as a hand region. The tracking process keeps the track of center points of hand regions of successive frames. For this purpose, it involves three steps. The first step is to determine a seed point that is the closest point to the center point of a previous frame. The second step is to perform region growing to form a candidate region of a hand. The third step is to determine the center point of a hand to be tracked. This point is searched by the mean-shift algorithm within a confined area whose size varies adaptively according to the depth information. To verify the effectiveness of our approach, we have evaluated the performance of our approach while changing the shape and position of a hand as well as the velocity of hand movement.

A Novel Carrier Leakage Suppression Scheme for UHF RFID Reader (UHF 대역 RFID 리더 반송파 누설 억압 연구)

  • Jung, Jae-Young;Park, Chan-Won;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.489-499
    • /
    • 2011
  • RFID technologies, which allow collecting, storing, processing, and tracking information by wirelessly recognizing the inherent ID of object through an attached electronic tag, have a variety of application areas. This paper presents a novel carrier leakage suppression RF(CLS-RF) front-end for ultra-high-frequency RF identification reader. The proposed reader CLS-RF front-end structure generates the carrier leakage replica through the nonlinear path that contains limiter. The limiting function only preserves the frequency and phase information of the leakage signal and rejects the amplitude modulated tag signal in the envelope. The carrier leakage replica is then injected into the linear path that contains phase shifter. Therefore, the carrier leakage signal is effectively cancelled out, while not affecting the gain of the desired tag backscattering signal. We experimentally confirm that the prototype shows a significant improvement in the leakage to signal ratio by up to 36 dB in 910 MHz, which is consistent with our simulation results.

Experimental & Numerical Result of the filling of Micro Structures in Injection Molding (미세 구조물의 충전에 관한 실험 및 수치해석)

  • Lee J.G.;Lee B.K;Kwon T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

A Study on the Use of Haar Cascade Filtering to check Wearing Masks and Fever Abnormality (Haar Cascade 필터링을 통한 마스크 착용 여부와 발열 체크)

  • Kim, Eui-Jeong;Kim, In-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.474-477
    • /
    • 2021
  • Recently, in order to prevent the proliferation of COVID-19, which began in earnest in 2020, an increasing number of places have been measuring the temperature and required to wear a mask. However, as wearing a mask and checking the temperature are typically measured directly by a person or by a single individual positioned in front of the machine, standards may vary based on the person's manual measurement method, wasting workforce. While standing in front of a device often measures the maximum temperature of the face, the standard of fever is also unclear. Both approaches can create bottleneck situations when checking large numbers of people. Furthermore, it is unable to conduct periodic measurements and tracking because the measuring machines are generally put only at the entrance. Thus, this study suggests a method for preventing the spread of infectious diseases by automatically identifying and displaying unmasked people and those with fever in real-time using a general camera, a thermal imaging camera, and an artificial intelligence algorithm.

  • PDF