• Title/Summary/Keyword: Fringe-field switching

Search Result 89, Processing Time 0.031 seconds

Study on Electro-optic Characteristics of Fringe-field Switching Twisted Nematic Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성이 음인 액정을 이용한 Fringe-field Switching Twisted Hematic 모드의 전기광학 특성 연구)

  • 송일섭;신성식;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.530-535
    • /
    • 2004
  • We have studied 90$^{\circ}$ twisted nematic mode switching by fringe electric field(F-TN mode) using a liquid crystal (LC) with negative dielectric anisotropy. In the device, two polarizers are parallel each other, electrodes exist only on bottom substrate, and one of rubbing direction is coincident with polarizer axis. Therefore, the cell shows a black state before a voltage is applied. With a bias voltage generating fringe-electric field, the LC twists perpendicular to fringe electric field such that the LCs are almost homogeneously aligned except near the bottom surface since the negative type of the LC is used. Consequently, the new device exhibits much wider viewing angle than that of the conventional TN mode due to in-plane switching and relatively high transmittance since the LC director above whole electrode area aligns parallel to the polarizer axis.

Electro-Optic Characteristics according to Distance between Pixel Electrodes in Fringe In-plane field Switching mode (화소 전극 간 거리가 Fringe In-plane field Switching mode의 전기 광학 특성에 미치는 영향)

  • Kim, Min-Su;Park, Ji-Woong;Jung, Jun-Ho;Ha, Kyung-Su;Lim, Young-Jin;Lee, Myong-Hoon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.337-338
    • /
    • 2008
  • We have studied electro-optic characteristics of a high performance liquid crystal display using Fringe In-plane field Switching (FIS) mode. The strong electric fields cause more liquid crystals to reorient almost in plane above and between the pixel electrodes. As a result, the operation voltage is lower and transmittance is higher than those of Fringe Field Switching (FFS) and In-Plane Switching (IPS) modes. Apparently, the transmittance depends on voltage applied at the configurations of FIS mode which are proposed. Therefore, we have studied certain length of between electrodes for maximum transmittance and light intensity.

  • PDF

Surface Driven Switching in Liquid Crystal Displays

  • Komitov, Lachezar
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.14-16
    • /
    • 2009
  • Surface driven switching of the liquid crystal bulk arising from the coupling between an applied electric field and a polarized state of a nematic liquid crystal, both localized at the substrate surface, is reported. Fast switching is demonstrated in a hybrid aligned nematic cell with a fringe electric field generated by comb-like electrode structure.

  • PDF

Authentic-color Characteristic of the Fringe-field Switching Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성이 음인 액정을 이용한 Fringe-field Switching Mode의 Authentic-color 특성)

  • Song, Je-Hoon;Choi, Yoon-Seok;Moon, Dae-Gyu;Han, Jeong-In;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.633-640
    • /
    • 2004
  • We have studied color tracking of a fringe-field driven homogenously aligned nematic liquid crystal (LC) cell with negative dielectric anisotropy and compared it with other devices such as the twisted nematic(TN) and in-plane switching(IPS) modes. According to studies, the TN device shows bluish color at grey scale and even at a low retardation cell it cannot avoid color tracking. The authentic IPS device having cell retardation value of 0.23 ${\mu}{\textrm}{m}$ also shows bluish white color. However, the FFS device shows excellent color tracking characteristics even at high retardation value of the cell while keeping high transmittance and greenish white.

A Single Gap Transflective Display using Fringe Field Switching Mode (FFS(Fringe Field Switching)모드를 이용한 단일갭 반투과형 액정 디스플레이)

  • Chin, Mi-Hyung;Jeong, Eun;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.388-389
    • /
    • 2007
  • A transflective liquid crystal displays driven by fringe field switching mode of new concept is being suggested. The FFS mode is known to have the different twist angle distribution at the position when an operating voltage is applied. We make the cell design by using the different twist angle which has some region decided on transmissive region and other region used to reflective region. By optimizing simulation condition in the concept, we proposed new tansflective LCDs using FFS mode with single gap and single gamma characteristics.

  • PDF

A High Quality Fringe-Field Switching Display for Transmissive and Reflective Type

  • Lee, Seung-Hee;Choi, Soo-Han
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.5-6
    • /
    • 2000
  • Fringe-field switching (FFS) technology exhibiting a high image quality has been developed. In this paper, one pixel concept, manufacturing process, materials, and electro-optic characteristics of FFS mode comparing with conventional in-plane switching mode, and its possible application to reflective type will be discussed.

  • PDF

Electro-optic characteristics of carbon nanotube-doped liquid crystal cell driven by in-plane switching and fringe-field switching

  • Shin, Seung-Hwan;Jeong, Seok-Jin;Jo, Eun-Mi;Lee, Seung-Hee;Kang, Hoon;Kim, Kyeong-Jin;Baik, In-Su;Jeong, Seok-Ho;Lee, Young-Hee;Lee, Hee-Kyu;Lee, Seung-Eun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.556-559
    • /
    • 2007
  • Effects of carbon nanotube (CNT) on the in-plain switching (IPS) and fringe-field switching (FFS) modes were investigated. The studies show that the CNT-doped LC cells exhibit lower transmittance but faster response time than those in the pure LC cell. Interestingly, the CNT-doped IPS and FFS modes show different characteristic in effects of operating voltage.

  • PDF

Electro-optic Characteristics of the fringe-field Driven-reflective Liquid Crystal Display with One Polarizer (1매의 편광판으로 구성된 반사형 Fringe-field Switching Mode의 전기 광학 특성)

  • 정태봉;박지혁;이종문;김용배;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic chracteristics of reflective liquid crystal display (LCD) using wide viewing angle LC mode, fringe field switching(FFS). Unlike other reflective LCD modes, in the FFS mode, the LC director in plance so an application to reflective display consisted of polarizer, LC layer and reflector is possible. when an incident light is 550mm, the optimal cell retardation value is 0.1365${\mu}$m and the efficiency of reflectivity is high over 90% with very little wavelength dispersion. Further, we have studied a new reflective display with polarizer, optical compensation film with half plate, LC plus reflector. The display with optimized cell parameters shows high contrast ratio (CR) over 130 with high light efficiency over 90% at normal direction and the CR greater than 5 exists over 60$^{\circ}$ of polar angle in all directions.

Wide Viewing Angle Transflective Liquid Crystal Display using Fringe-Field Switching Mode (FFS 모드를 이용한 광시야각 반투과형 액정 디스플레이)

  • Song, Je-Hoon;Lim, Young-Jin;Park, Chi-Hyuk;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.567-570
    • /
    • 2004
  • We have designed a single gap transflective liquid crystal display (LCD) driven by a fringe electric field, in which the LCs are homogeneously aligned in the initial state. In the reflective and transmissive areas, the degrees of the rotation of the LC director are $22.5^{\circ}$ and $45^{\circ}$, respectively. Utilizing this mechanism and an in-cell retarder with a quarter-wave plate that is used below the LC layer, the transflective LCD using fringe-field switching (FFS) mode is realized.

  • PDF

Electro-optic Characteristics of the Fringe-Field Switching Liquid Crystal Mode, Status of Applications, and Future Issues (Invited Paper) (Fringe-Field Switching (FFS) 액정 소자의 전기광학 특성, 응용 현황 및 향후 이슈)

  • Lim, Young Jin;Kim, Dae Hyung;Kim, Jin-Hyun;Kim, Yong Hae;Ahn, Seon Hong;Lee, Seung Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.6
    • /
    • pp.301-310
    • /
    • 2014
  • Recently, the fringe-field switching (FFS) mode in liquid crystal displays has been used mainly for high image quality and high-resolution liquid crystal displays (LCDs). In this review paper, the fundamental switching principle of the FFS mode, with its excellence over other LC modes in electro-optic performance, will be described. In addition, the development history, present technical issues, and future of the FFS LCD will be discussed.