• Title/Summary/Keyword: Frigate

Search Result 22, Processing Time 0.026 seconds

Shock-Resistance Responses of Frigate Equipments by Underwater Explosion

  • Kim, Hyunwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.161-167
    • /
    • 2022
  • Three-dimensional finite element analysis (3D-FEA) models have been used to evaluate the shock-resistance responses of various equipments, including armaments mounted on a warship caused by underwater explosion (UNDEX). This paper aims to check the possibility of using one-dimensional (1D) FEA models for the shock-resistance responses. A frigate was chosen for the evaluation of the shock-resistance responses by the UNDEX. The frigate was divided into the thirteen discrete segments along the length of the ship. The 1D Timoshenko beam elements were used to model the frigate. The explosive charge mass and the stand-off distance were determined based on the ship length and the keel shock factor (KSF), respectively. The UNDEX pressure fields were generated using the Geers-Hunter doubly asymptotic model. The pseudo-velocity shock response spectrum (PVSS) for the 1D-FEA model (1D-PVSS) was calculated using the acceleration history at a concerned equipment position where the digital recursive filtering algorithm was used. The 1D-PVSS was compared with the 3D-PVSS that was taken from a reference, and a relatively good agreement was found. In addition, the 1D-PVSS was compared with the design criteria specified by the German Federal Armed forces, which is called the BV043. The 1D-PVSS was proven to be relatively reasonable, reducing the computing cost dramatically.

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.

A Study on the Measuring of Combat Effectiveness for Naval Frigates Using Analytic Hierarchy Process (AHP를 이용한 해군 호위함 전투효과 측정에 관한 연구)

  • Kim, Kitae;Lim, Yojoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Modern combat has been extended to the concept of real-time response to a variety of threats simultaneously occurring in vast areas. In order to quick command determination and accurate engagement in these threats, the combat system has emerged in frigate. Frigates conduct anti-surface, anti-submarine, and anti-aircraft as the core forces of the fleet. In this study, the combat effectiveness measures naval frigates using AHP (analytic hierarchy process) method. A hierarchical structure for measuring the combat effectiveness was developed, and weights of criteria were calculated by expert surveys and pair-wise comparisons. In addition, the combat effectiveness of frigates was synthesized and compared. The weights for each attribute were calculated, and the weights for the three main attributes were in the order of act (0.594), evaluate (0.277), and see (0.129). As a result of calculating the weight, anti surface warfare (0.203) was the highest. The combat effectiveness of FFG Batch-III, which has advanced hardware and software and improved combat system capabilities, see (1.73 to 2.56 times), evaluate (1.68 to 2.08 times), and act (1.31 to 3.80 times) better than the comparative frigate. In summarizing the combat effects of the frigate, FFG Batch-III was 1.41~2.95 times superior to the comparative frigate. In particular, a group of experts evaluated the act importantly, resulting in better combat effectiveness.

Marine gas turbine monitoring and diagnostics by simulation and pattern recognition

  • Campora, Ugo;Cravero, Carlo;Zaccone, Raphael
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.617-628
    • /
    • 2018
  • Several techniques have been developed in the last years for energy conversion and aeronautic propulsion plants monitoring and diagnostics, to ensure non-stop availability and safety, mainly based on machine learning and pattern recognition methods, which need large databases of measures. This paper aims to describe a simulation based monitoring and diagnostic method to overcome the lack of data. An application on a gas turbine powered frigate is shown. A MATLAB-SIMULINK(R) model of the frigate propulsion system has been used to generate a database of different faulty conditions of the plant. A monitoring and diagnostic system, based on Mahalanobis distance and artificial neural networks have been developed. Experimental data measured during the sea trials have been used for model calibration and validation. Test runs of the procedure have been carried out in a number of simulated degradation cases: in all the considered cases, malfunctions have been successfully detected by the developed model.

A new procedure for load-shortening and -elongation data for progressive collapse method

  • Downes, Jonathan;Tayyar, Gokhan Tansel;Kvan, Illia;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.705-719
    • /
    • 2017
  • Progressive Collapse Method (PCM) has been broadly applied to predict moment-carrying capacity of a hull girder, however accuracy of PCM has not been much studied. Accuracy of PCM is known to be dependent on how Load-Shortening and -Elongation (LSE) curve of a structural units are well predicted. This paper presents a new procedure to determine LSE datum based on box girder Finite Element Analyses (FEAs) instead of using finite element model of stiffened panels. To verify reliability of FEA results, the simple box girder collapse test results are compared with FEA results of same box girders. It reveals one frame-based box girder model is sufficiently accurate in terms of ultimate strengths of the box girders. After extracting LSE data from the box girders, PCM-based moment-carrying capacities are compared with those from FEAs of the box girders. PCM results are found to be equivalent to FEAs in terms of moment-carrying capacity if accurate LSE data are secured. The new procedure is applied to well-known 1/3 scaled frigate full section. Very excellent moment-carrying capacity of frigate hull section is obtained from PCM with LSE data from box girder FEAs.

Advanced Idealized Structural Units Considering the Excessive Tension-Deformation Effects (과도 인장변형효과를 고려한 개선된 이상화구조요소)

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.100-115
    • /
    • 1993
  • In this paper, the extent of use of three kinds of the existing idealized structural units, namely the idealized beam-column unit, the idealized unstiffened plate unit and the idealized stiffened plate unit, is expanded to deal with the excessive tension-deformation effects, in which a simplified mechanical model for the stress-strain relation of steel members under tensile load is suggested. The 1/3-scale hull model for a leander class frigate under sagging moment tested by Dow is analyzed, and it is shown that the excessive tension-de-formation is a significant factor affecting the progressive collapse behavior, particularly in the post-collapse range.

  • PDF

Cheonan Frigate Incident and Yeonpyeongdo Shelling by North Korea: Changing Public Opinion; Strategic Consideration (천안함·연평도 도발 이후 국민의식 변화와 대책)

  • Sohn, Kwang-Joo
    • Strategy21
    • /
    • s.34
    • /
    • pp.93-127
    • /
    • 2014
  • During the four years following the sinking of the Cheonan frigate in 2010, the South Korean public opinion has seen changes in four basic ways. First, public polls with respect to the cause of the sinking show that 70% of the people consider North Korea as the culprit, while 20% maintain that it was not an act carried out by North Korea. Second, the opinions relative to the cause of the incident seem to vary according to age difference, generational difference, and educational difference. From 2011, people in their 20s showed 10% increase in regarding North Korea as the responsible party. People in their 30s and 40s still have a tendency not to believe the result of the investigation carried out by the combined military and civilian group. Third, the most prominent issue that arose aftermath of the Cheonan incident is the fact that political inclination and policy preference are influencing the scientific determination of the cause. In other words, scientific and logical approach is lacking in the process of determining the factual basis for the cause. This process is compromised by the inability of the parties concerned in sorting out what is objective and what is personal opinion. This confused state of affairs makes it difficult to carry on a healthy, productive debate. Fourth, rumors, propaganda, and disinformation generated by pro-North Korea Labor Party groups in the internet and SNS are causing considerable impact in forming the public opinion. Proposed Strategy 1. The administration can ascertain public trust by accurately determining the nature of the provocation based on accurate information in the early stages of the incident. 2. Education in scientific, logical, rational methodologyis needed at home, school, and workplace in order toenhance the people's ability to seek factual truths. 3. In secondary education, the values of freedom, human rights, democracy, and market economy must be reinforced. 4. It is necessary for the educational system to teach the facts of North Korea just as they are. 5. Fundamental strength of free democratic system must be reinforced. The conservative, mainstream powers must recognize the importance of self-sacrifice and societal duties. The progressive political parties must sever themselves from those groups that take instructions from North Korea's Labor Party. The progressives must pursue values that are based on fundamental human rights for all. 6. Korean unification led by South Korea is the genuine means to achieve peace in a nuclear-free Korean peninsula. The administration must recognize that this unification initiative is the beginning of the common peace and prosperity in the Far East Asia, and must actively pursue international cooperation in this regard.

An Evaluation of Real-Time Navigational Safety with Weather Conditions (함정의 기상 변화에 다른 실시간 항해 안전성 평가)

  • 공길영
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.169-177
    • /
    • 1999
  • There is some limitations for ship to gather weather and sea state information. To make up for this weakness, land organizations can gather the wider variety of information, evaluate the navigational safety on a ship, and supply this information to the ship. In this study, the involuntary speed loss are calculated using the real-time information on weather and considering the increase of resistance induced by wave, and the navigational safety in a seaway is evaluated. The used model for computer simulation is Lpp 93m frigate class ship. The feasibility study is made of using simulation results in actual operation.

  • PDF

Advanced Idealized Structural Units Considering Excessive Tension-Deformation Effects

  • Paik, Jeom-Kee
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.125-145
    • /
    • 1995
  • In this paper, three kinds of the existing idealized structural units, namely the idealized beam-column units the idealized unstiffened plate unit and the idealized stiffened plate unit are expanded to deal with the excessive tension-deformation effects. A simplified mechanical model far the stress-strain relationship of steel members under tensile load is suggested. The 1/3-scale hull model for a leander class frigate under sagging moment tested by Dow is analyzed, and it is shown that the excessive tension-deformation is a significant factor affecting the progressive collapse behavior, particularly in the post-collapse range.

  • PDF

A Design of LAS data processing board using PowerPC and VxWorks (PowerPC 및 VxWorks를 이용한 예인배열센서 데이터처리보드 개발)

  • Lim, Byeong-Seon;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • This Paper deal with a design, making a prtotype and test methods of Real-time towed Line Array Sensor Data processing board for fast data communication and long range transmission with SFM(Serial FPDP Module) through Optic-fiber channel. The LAS A,B,C group Data from towed line array sensor which is installed in FFX(Fast Frigate eXperimental) of Korean Navy is packed a previously agreed protocol and transmitted to the Signal processing unit. Consider the limited space of VME 6U size, LAS Data processing board is designed with MPC8265 PowerPC Controller of Freescale for main system control and Altera's CycloneIII FPGA for sensor data packing, self-test simulation data generation, S/W FIFO et cetera. LAS Data processing board have VxWorks, the RTOS(Real Time Operating System) that present many device drivers, peripheral control libraries on board for real-time data processing.

  • PDF