• 제목/요약/키워드: Frictional wear

검색결과 218건 처리시간 0.023초

마찰 에너지 해석을 통한 러버 트랙(Rubber Track)의 마모율 예측 (Prediction of Wear Rate for Rubber Track by Using Frictional Energy Analysis)

  • 강종진;조진래;정의봉
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.125-133
    • /
    • 2011
  • The wear of rubber track being in contact with the road surface is an important subject because it decreases the traction performance and the operating efficiency of tracked vehicle. For the above reasons, many attempts have been made to quantitatively calculate the rubber track. However, it depends on the experimental methods which are highly time- and cost-consuming. Therefore, the numerical simulation approach is highly desirable, but it needs to model the complex geometry and the material behavior in details as well as the interaction with the road surface. In this study, the rubber track and its material behavior are elaborately modeled since these factors are very important in the prediction of the wear rate of the rubber track. Accordingly to the studies on the rubber wear by previous investigations, it has been found that the wear is greatly influenced by the frictional energy. The frictional energy of rubber track is computed by utilizing the 3D finite element analysis of the rubber track, and the wear rate is evaluated making use of the frictional energy and a wear model.

마찰가공된 김속표면의 마감특성에 관한 연구 (A Study on the Wear Characteristics of Frictional Worked Surface)

  • 손명환
    • 기계저널
    • /
    • 제16권2호
    • /
    • pp.122-127
    • /
    • 1976
  • It was reported in the Journal of KSME Vol. 15, No. 3 and No. 4, 1975 that could be finished the best smooth surface by applying frictional work to the metal surface. Even if we can finish the best smooth surface of methal, it is not available when it has not anti-wear. Present study tried to investigate the anti-wear and the characteristics of frictional worked surface by using the sliding contact between plain bearing of brass and frictional worked jornal of mild steel. The results were compared with the case of ground journal.

  • PDF

미끄럼 환경의 변화에 따른 ${Si_3}{N_4}$의 마멸거동 (Wear Behaviors of ${Si_3}{N_4}$ under Various Sliding Conditions)

  • 이영재
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1753-1761
    • /
    • 1996
  • The wear behaviors of ${Si_3}{N_4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used. Using the servo-metor, the sliding speed did ot alternate due to the frictional forces. Threekinds of loads and speeds were selected to watch the variation of the wear rates and the frictional forces. Also three kinds of sliding condition under a constant speed were used to see the effects of the oxidationand the abrasion. The contact pressure was more effective than the repeated cycle on the wear behavior of ${Si_3}{N_4}$. With the low loads, the effect of the asperity-failure was more dominant than that of oxidation and abrasion. As increasing the load, the effects of oxidation and abrasion were increased, but the asperity-failure effects were decreased. The wear particles destroyed the ozide layers formed on sliding surfaces. The wear rate could be decreased due to delaying the oxidation. The frictional power and the wear weight per time were usefuel to see the transition of wear.

내마모성이 향상된 기능성 표면구조를 갖는 인공관절에 관한 기초적인 연구 (A Basic Study on Functional Friction Surface of Artificial Joints)

  • 김동욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권6호
    • /
    • pp.519-526
    • /
    • 2001
  • At present. about 0.3 million and more THRs (Total Hip Replacement) in a rear are being done worldwide. The increase in mechanical failure with the increase in THR, required more revisions. Revisions compensate mainly the wear of the artificial joint frictional surface and the loosening of the cup and stem. According to recent researches, loosening is mainly due to wear debris UHMWPE (Ultra High Molecular Weight Polyethylene) from frictional surfaces . To overcome the wear problems associated with artificial joint materials , new surface structures with regular Patterns were designed and fabricated The lubrication Properties were examined to evaluate the wear of the frictional surfaces. The surface structure manifested a Pattern of "dents" with a 0.2-1.0 mm of diameter and 0.6-2.0 mm of Pitch. From the friction test of the SUS316L vs UHMWPE using the frictional tester, we found that the lubrication Performance was improved due to of drastically reduced amount of abrasion. There were optimum sizes for the diameter and the pitch of the Pattern. The results demonstrated that the lubrication properties could be improved by Patterning of the frictional surfaces. The surface Patterning was effective in preventing wear of the frictional surfaces, and the life of an artificial joint could be extended with such Patterning.

  • PDF

세라믹 재료의 미끄럼 환경 변화에 따른 마찰 및 마멸 거동 (Friction and Wear Behavior of Ceramics under Various Sliding Environments)

  • 장선태;이영제
    • Tribology and Lubricants
    • /
    • 제11권3호
    • /
    • pp.11-23
    • /
    • 1995
  • The friction and wear behavior of $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used for a wear test method. Using the servo-motor, the sliding speed did not alternate due to the frictional forces. Three kinds of loads were selected to watch the variation of the wear rates and the frictional forces under a constant speed. Three kinds of sliding conditions were used to see the effects of the oxidation and the abrasion. The dominant wear mechanisms of $Al_{2}O_{3}$ were the abrasion and the formation of transfer layers. The abrasion has a great effect on the wear of SiC. The wear of $Si_{3}N_{4}$ was due to the asperity-failure and the oxidation. Also, the wear rate of each ceramic is shown to be related to the frictional power provided to the tribological system.

경계윤활 및 무윤활 상태에서 선접촉을 하는 세라믹과 강의 마찰과 마멸 특성 (Friction and Wear of Ceramic-Steel Pairs in Boundary-Lubricated and Unlubricated Line-Contact Sliding)

  • 이영제;김영호;장선태
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.12-25
    • /
    • 1996
  • The friction and wear behaviors of ceramics against steels with lubricants were investigated and compared with those observed in air. Lubrications wbre done by a water and a commercial engine oil as received. The investigated ceramics were $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$. Steels with 0.2 wt.% C were heat treated to obtain tempered structure. A cylinder-on-plate tribometer with rotated sliding motion was used to carry out the experiments. In the experiments reported here, the ranges of different testing speeds and loads were used. It was found that the friction and wear characteristics of tested pairs were significantly influenced by environments. In water and oil environments the wear of ceramics was reduced from 10$^{-6}$ g/s down to 10$^{-8}$ g/s in dry sliding at the same values of the frictional power which are the products of the friction coefficient, the load and the sliding speed. SiC showed excellent wear resistant behavior in water sliding, which was the lowest among tested ceramics, but it was, very poor in oils. In case of $Si_{3}N_{4}$, the wear rates were very low under oil environment, but the highest in water. The wear rates of $Al_{2}O_{3}$ were very low in both lubricating conditions at low values of the frictional power, but high at high values of the frictional power.

순수금속의 재료물성치와 마찰.마멸특성에 대한 연구 (The Effects of Relative Material Properties on the Friction and Wear Behavior of Pure Metals)

  • 황동환;성인하;김대은
    • Tribology and Lubricants
    • /
    • 제14권2호
    • /
    • pp.10-20
    • /
    • 1998
  • In this paper, the effects of material properties on the friction and wear behavior of pure metals are investigated. The sliding material pairs are selected based on their relative compatibility and relative hardness ratio of the specimen. The initial and steady-state friction coefficients are obtained in the experiments and the wear rates are quantitatively investigated. It is shown that the initial friction coefficient is affected by the hardness ratio of sliding materials. Furthermore, in steady state condition, neither hardness ratio nor compatibility has significant influence on the frictional behavior. As for wear, the ductility of the metal affects the wear particle generation process which in turn affects the frictional behavior. The findings of this research suggest that frictional interaction cannot be simply characterized by either compatibility or hardness ratio of the materials undergoing sliding contact.

고무 블록의 마찰에너지 해석 (An Analysis of the Frictional Energy on the Rubber Block)

  • 유현승;김두만;이상주;고범진
    • 한국항공우주학회지
    • /
    • 제35권7호
    • /
    • pp.619-626
    • /
    • 2007
  • 고무 블록의 마찰에너지에 관한 연구는 고무 마모 연구를 위한 기초 연구이자 마찰과 마모의 관계를 규정짓는 중요한 연구이며, 지금까지의 마모 이론은 대부분 마찰에너지에 근거하여 전개되어 오고 있다. 하지만, 대부분이 실험이나 유한요소 해석에 기초한 연구이며, 해석적 방법에 의한 연구는 많이 이루어지지 않았다. 따라서 본 논문에서는 에너지 방법을 이용하여 재료 물성, 블록의 형상, 수직 및 전단하중, 블록 이동 속도의 함수로 표현되는 마찰에너지를 해석적으로 구하고 그 결과를 시험 결과와 비교 검토하였으며, 이를 통해 마모 특성 해석의 정확도를 높일 수 있는 기반을 마련하였다

Effect of Blade Materials on Wear Behaviors of Styrene-Butadiene Rubber and Butadiene Rubber

  • Lee, Gi-Bbeum;Shin, Beomsu;Han, Eunjung;Kang, Dawon;An, Dae Joon;Nah, Changwoon
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.172-178
    • /
    • 2021
  • The wear behavior of styrene-butadiene rubber (SBR) and butadiene rubber (BR) was investigated using a blade-type abrader with a steel blade (SB), Ti-coated tungsten carbide blade (TiB), or zirconia blade (ZB). The wear rate of SBR against SB and TiB decreased with increasing number of revolutions because of the blunting of the blades during wear. However, the wear rate of SBR against ZB remained nearly constant with little blade blunting. Generally, the wear rate of BR was largely unaffected by the blade material used for abrasion. The wear rate and frictional coefficient of SBR were found to be higher than those of BR at similar levels of frictional energy input. A power-law relationship was found between the wear rate and frictional energy input during abrasion. A well-known Schallamach pattern was observed for SBR, while a much finer pattern was observed for BR. The blade material affects the wear rate of the rubbers because the macromolecular free radicals and blade tend to undergo mechano-chemical reactions. The inorganic ZB was found to be the most inert for such a mechanism.

로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향 (Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material)

  • 정광기;이상우;권성욱;최성우;이희옥
    • Tribology and Lubricants
    • /
    • 제36권4호
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.