• Title/Summary/Keyword: Frictional test

Search Result 419, Processing Time 0.024 seconds

DEVELOPMENT OF EVALUATION METHOD FOR FRICTIONAL CHARACTERISTICS OF ZINC COATE STEEL SHEET

  • Kim, Young-Suk-
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.71-82
    • /
    • 1992
  • The frictional characteristics of Zn-Ni coated steel sheets were investigated by draw bead test and strip draw test. In strip draw test, the frictional characteristics were evaluated by the drawing force ratio (Tc/Ts) for half coating-stripped specimens. It is clarified that the drawing force ratio obtained by strip draw test is a convenient parameter compared to coefficient of friction obtained by draw bead test to evaluate the frictional characteristics of Zn-Ni coated steel sheets.

  • PDF

Effect of Surface Roughness on Frictional Behavior of Sheet Steel for Automotive (자동차용 냉연 강판의 표면 거칠기에 따른 마찰 특성 분석)

  • Han, S.S.;Park, K.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.401-406
    • /
    • 2008
  • The frictional behavior of stamping process is a function of interface parameters such as sheet and tool material, lubricant, surface roughness, contact pressure, sliding speed etc. Among these parameters the thing that can be controlled by a steel maker is the surface roughness of sheet. In this study, effects of surface roughness on the frictional behavior of steel sheet for automotive were investigated to find out the way to improve the frictional characteristics of steel sheet. The cold rolled steel sheets with various surface roughnesses were prepared for the test. The flat type friction test was conducted with different lubricant conditions. The surface roughness effect on frictional behavior depends on the viscosity of lubricant. The frictional characteristic of steel sheet was influenced by the amplitude of roughness as well as the shape of that.

Effects of Design Parameters on the Frictional Coefficient of Clamping Pads for Self-Climbing Crane systems (자력 승강식 크레인의 클램핑 패드 마찰계수에 미치는 설계변수 영향)

  • Sang-Hyun Park;Su-Min Lee;Youngjae Yu;Sang-Rai Cho
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.13-20
    • /
    • 2023
  • A self-climbing crane (SCC) system is under development for the installation and maintenance of wind turbines. It can move vertically along the wind turbine tower by itself. One of the key components of the SCC system is the clamping pad to maintain a safe position on the wind turbine tower. The SCC system can maintain its position on the tower from the frictional force generated between the surfaces of the clamping pads and the tower. If the frictional force provided by the clamping pads are insufficient, the SCC system cannot stay in the vertical position on the tower. Therefore, the development of clamping pads with sufficient frictional force is very important for the SCC system. At the same time, the operation of the SCC system should not damage the paint coating of the wind turbine tower. In order to verify that the frictional force is sufficient and that frictional and compressive forces do not cause damage to the paint, a number of combined compression and shear loading tests were conducted using a test device prepared for this study. The details regarding the test specimens, test procedure, and test results are summarized in this paper.

Sliding Frictional Characteristics with the Change of Dynamic Parameters in the Friction Measurement (마찰시험기의 시스템 동적변수 변화에 따른 미끄럼마찰 특성)

  • 공호성;윤의성;권오관;오재응
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.44-55
    • /
    • 1995
  • Frictional characteristics with the change of dynamic parameters, such as stiffness, inertia and damping, in the friction measurement at dry sliding surfaces were experimentally and theoretically investigated throughout the study. Dynamic frictional force and the variation in the normal load were mainly measured at the various conditions of system dynamic parameters with which stiffness in the normal direction, loading mechanisms and test materials were varied. For the normal load, mechanisms using both a dead weight and a pneumatic cylinder were applied, which resulted in change of the inertia and damping of the test rig. Test materials were steel, rosin and PTFE, which have different types of intrinsic frictional characteristics. Test results showed that frictional characteristics under different dynamic parameters could be different even though the operating variables were the same and also they could result in the variation in the normal load, which could consequently affect the wear mechanism.

Evaluation of the Sliding Frictional Characteristics at the Different Loading Mechanisms and Normal Stiffness (마찰시험기의 하중부과 방법과 수직방향 강성 변화에 따른 미끄럼 마찰특성 평가)

  • 윤의성;공호성;권오관;오재응
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.55-64
    • /
    • 1996
  • Frictional characteristics with the change of loading method and normal stiffness at dry sliding surfaces were experimentally and theoretically evaluated in this study. For the study, a ball-on-disk typed test rig was built and implemented, which allowed a proper selection of loading mechanism and normal stiffness of the test rig. Loading method were varied from dead weight to pneumatic cylinder and spring loading, and the normal stiffness was varied by a spring of different stiffness. Test results showed that frictional characteristics at various loading methods were different even though the operating variables were the same. Discrepancy in the frictional characteristics, such as coefficient of friction and fluctuation in the normal load, were explained by the change in dynamic parameters of the test rigs. Results also showed that coefficient of friction, which defines as a ratio of frictional force divided a normal load, could be differently evaluated in the calculation when fluctuation in the normal load was significant.

Lab-based Simulation of Carton Clamp Truck Handling - Frictional Characteristics between Corrugated Packages

  • Park, Jong Min;Choi, Sang Il;Kim, Jong Soon;Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.131-137
    • /
    • 2019
  • Carton clamps, one of forklift attachments, allow users to quickly handle shipping units such as unitized loads, large shipping cases, or crates without the requirement of pallets. As the use of palletless handling by clamp trucks increases, so does the need for simulation research on clamp truck handling. The frictional characteristics for various contact conditions of corrugated paperboards and their constituent boards were analyzed to obtain the data needed in the computer simulation for the handling of carton clamp truck. The overall mean of static-frictional coefficients between selected corrugated paperboards was 0.38 (±0.01), which was 1.3~1.6 times greater than 0.23~0.29 of the frictional coefficients between boards. The overall mean of static-frictional coefficients between the corrugated paperboards and the rubber contact pad was 0.82 (±0.02), which was about 1.1 to 2.8 times greater than 0.29~0.78 of the static-frictional coefficient between the linerboard and the rubber contact pad. The overall mean of kinetic-frictional coefficients between the corrugated paperboards was 0.35 (±0.01), and 0.76 (±0.02) between the corrugated paperboards and the rubber contact pad.

Characteristics of Negative Skin Friction of Foundation Pile and Construction Management by Experimental Field Test (현장시험을 통한 기초 말뚝 부마찰력의 특성과 시공관리)

  • Hong, Seok-Woo
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • In this study the negative skin friction test of foundation pile was performed in order to monitor the negative skin frictional force acting on the steel pipe pile installed in soft soil. The monitored frictional stresses obtained from the long-term loading test. Through the long-term frictional stress monitoring test, the economical period for the construction of the superstructure was determined. The following conclusion were derived from this study: (1) In soft soil, negative skin friction increases with the increase in the rate of settlement. (2) In the friction relationship graph, the period where there is no frictional strain increase is verified and the time for the construction of the superstructure is determined. (3) The pile loading test was performed and the negative skin friction was compared with the test results. It was determined that the negative skin friction after driving was larger than the negative skin friction obtained from the loading test. 15 days after the construction, the monitored value was similar with the theoretical data. (4) It was determined that even during the occurrence of negative skin friction an economical construction management can be performed using the long-term monitoring method of negative skin friction.

A Comparative Study of Skin Frictional Force through a Laboratory Model Test of Pile Filling Materials with Utilizing Circulating Resources (순환자원 활용 말뚝채움재의 실내모형시험을 통한 주면마찰력 비교 연구)

  • Song, Sang-Hwon;Jeong, Young-Soon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Rural multi-purpose buildings needs to ensure their safety against various disasters. Therefore, a pile foundation, which is a foundation type that can transmit the load of the structure to the bedrock layer, has been designed. The pile foundation method is largely divided into driving piles method and pre-bored pile method. Recently, in order to respond to the Noise and Vibration Control Act and related environmental complaints, construction of pile foundation adopts pre-bored pile method. The bearing capacity of the pre-bored pile method is calculated through a load test in situ. However, a disadvantage stems in that it is difficult to measure the ultimate bearing capacity due to field conditions. Therefore, in this study, the skin frictional force of pre-bored pile was measured through a model test in laboratory for each pile filling material. In result, the pile filling material with using circulating resources shows superior skin frictional force than ordinary portland cement. This study also judged that the result can be applied in place of ordinary Portland cement in the field.

Influence of Surface Roughness Change on Frictional Behavior of Sheet Steel for Each Forming Mode (소성변형에 의한 냉연 강판의 표면 거칠기 변화가 마찰 특성에 미치는 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.236-241
    • /
    • 2010
  • The frictional behavior of bare steel sheet highly depends on surface roughness. It was investigated that the change of surface roughness of bare steel sheet due to deformation for each forming mode. The flat type friction test was done to check the effect of surface roughness change on frictional characteristics of bare steel sheet. As increasing the deformation, the Ra value was increased at stretching forming mode and drawing forming mode, however the change of Pc showed different trends. The Pc was decreased as increasing stretch deformation but increased at compression deformation. At drawing forming mode, the friction coefficient was increased as deformation was increased after initial big drop with drawing oil. As deformation was increased, the friction coefficient was decreased with drawing oil at stretching forming mode. The results show that the deformation changes the surface roughness and frictional characteristics of steel sheet but the effect depends on the forming mode.

Full Scale Frictional Resistance Reduction Effect of a Low Frictional Marine Anti-fouling Paint based on a Similarity Scaling Method (상사축척법에 기반한 저마찰 선박 방오도료의 실선 마찰저항 저감성능 추정)

  • Yang, Jeong Woo;Park, Hyun;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.71-81
    • /
    • 2017
  • In this study, a series of full-scale extrapolation procedures based on the Granville's similarity scaling method, which was employed by Schultz (2007), is modified and then applied to compare the resistance performance between two different anti-fouling coatings. As an analysis example, the low frictional AF coating based on a novel skin-friction reducing polymer named FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer), which had been invented by the present author, is employed. The low frictional coating, which gives 25.4% skin frictional reduction in lab test, is estimated to give 18.2% total resistance reduction for a 176k DWT bulk carrier.