• Title/Summary/Keyword: Frictional heat

Search Result 207, Processing Time 0.026 seconds

Slip Movement Simulations of Major Faults Under Very Low Strength

  • Park, Moo-Choon;Han, Uk
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.61-75
    • /
    • 2000
  • Through modeling fault network using thin plate finite element technique in the San Andreas Fault system with slip rate over 1mm/year, as well as elevation, heat flow, earthquakes, geodetic data and crustal thickness, we compare the results with velocity boundary conditions of plate based on the NUVEL-1 plate model and the approximation of deformation in the Great Basin region. The frictional and dislocation creep constants of the crust are calculated to reproduce the observed variations in the maximum depth of seismicity which corresponds to the temperature ranging from $350^{\circ}C$ to $410^{\circ}C$. The rheologic constants are defined by the coefficient of friction on faults, and the apparent activation energy for creep in the lower crust. Two parameters above represent systematic variations in three experiments. The pattern of model indicates that the friction coefficient of major faults is 0.17~0.25. we test whether the weakness of faults is uniform or proportional to net slip. The geologic data show a good agreement when fault weakness is a trend of an additional 30% slip dependent weakening of the San Andreas. The results of study suggest that all weakening is slip dependent. The best models can be explained by the available data with RMS mismatch of as little as 3mm/year, so their predictions can be closely related with seismic hazard estimation, at least along faults where no data are available.

  • PDF

A Study on the Improvement of Lubrication Characteristics for Fuel Pump in LPG Engine (자동차용 LPG 연료펌프의 윤활성 개선에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. Self acting lubricated groove design or coating can be used in high-speed and high precision spindle system like a roller-vane type fuel pump, because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy and simplicity in manufacturing. Those design method can also affect the atomization of fuel from the injector and the formation of fuel film on the intake manifold. In this study, experiments are carried out to get performance characteristics of initial and steady state operation, The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

The Effect of Penetrating Agent and Fluorosilane on High Temperature Teflon Coating (침투제와 불소화실란이 고온용 테프론 코팅에 미치는 영향)

  • Lee, Soo;Seong, Eun-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.672-678
    • /
    • 2013
  • Although the basalt fiber has superior fire-resistance and chemical resistance, it has many disadvantages in its applications. Generally, the tensile and loop strengths of basalt fiber were decreased with generated frictional heat during industial appplications. To solve this problem, polytetrafluoroethylene (PTFE) coating system was introduced and a sutable coating condition was evaluated. The basalt fiber was pre-treated with triethoxytrifluoropropylsilane (TMTFPS) at various pHs and then coated with PTFE dispersions with penetrating agent sodium bis(2-ethylhexyl)sulfo succinate (DOS-Na) to increase the tensile and loop strengths as well as to reduce the fibril during working. A universial testing machine (Instron Model 3366) was used to measure tensile and loop strengths. When the PTFE dispersion with 0.25 wt% of DOS-Na was coated on the surface of basalt fiber after pre-treating with 5 wt% of PTFE, the highest tensile and loop strengths were reached to 3.5 gf/D and 2.4 gf/D, respectively.

A study of Frictional Behavior of SCM415 Steel as a Function of Density of Micro Dimples (미세 딤플의 밀도에 따른 SCM415강의 마찰 거동 연구)

  • Cho, Min-Haeng;Lee, Seung-Hyuk;Park, Sang-Il;Lyo, In-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.311-316
    • /
    • 2010
  • Surface texturing of micro dimple or pore-shaped pattern was prepared using a fiber laser system. Surface texturing was designed to have a square pattern with a particular pitch distance for each corresponding density of 5, 10, 20, and 30%. Thermal damages such as bulges and burrs formed during laser irradiation were observed around the dimples. Thermal damages were later removed by lapping using alumina particles of $0.3{\mu}m$ in diameter. Oscillating friction tests were performed against heat-treated high speed steels under lubricated condition. The lubricant used was SAE 5W-30 automotive engine oil. Normal contact pressure and oscillating frequency was 0.28 MPa and 20 Hz, respectively. The tests were continued for 20 minutes, and friction plots were recorded for examination. Results revealed that the coefficient of friction was lowered regardless of texturing density. Moreover, the lowest coefficient of friction was obtained for 10% density texturing. It is attributed to increased lubricity due to the introduction of surface texturing. In addition, it is concluded that the optimum texturing density and pattern must be found for the best lubricity and low friction.

Effect of Cold Forming Method on Drawability in Trunk Floor Panel (냉각성형공법이 트렁크 플로어 드로잉성에 미치는 영향)

  • Choi C. S.;Choi Y. C.;Park J. H.;Oh Y. K.;Lee J. W.;Lee H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.113-119
    • /
    • 2000
  • This study is to investigate the effects of cold forming method with steel sheet of SCP3C to improve continuous productivity. Experiments were carried out in various working conditions, such as the number of stamping and the punch temperature. The effects of the punch temperature and the number of stamping on drawability of steel sheet of SCP3C as well as clearance and draw-in in tile number of stamping were examined and discussed. The cooled the punch and the die and the blankholder heated by stamping were achieved at continuous productivity and quality improvement. The optimum forming condition for drawing trunk floor panel of SCP3C is shown as the punch is cooled by coolant of $-5^{\circ}C$ and at the same time both the die and the blankholder are heated by stamping and frictional heat,

  • PDF

Development of a jet air supplying welding mask for controlling welding fumes (압축공기를 이용한 용접흄 제어용 용접면(JASM)의 개발)

  • Song, Se-Wook;Kim, Jong-Gil;Ha, Hyun-Chul;Kim, Tae-Hyeung;Kim, Jong-Chul;Jung, Yu-Jin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.98-108
    • /
    • 2000
  • Controlling the over-exposure of welding fumes is not an easy problem because neither general nor local exhaust ventilation systems could be successfully applied. A jet air supplying welding mask was development to reduce the exposure level of welding fumes. The jet airs tream pushes the welding fumes away from the breathing zone by using the frictional characteristic of jet. Laboratory experiments were conducted to optimize the efficiency of controlling welding fumes. Thereafter, its performance was tested in a laboratory and an industrial field. The efficiencies of reducing the welding fume exposure were about 90% and 80% in a laboratory and an industrial field, respectively. Additionally, it resulted in elimination of heat inside the mask and enhancement of clear visuality.

  • PDF

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

Study on the pressure drop of ternary refrigerant R-407c during condensation inside horizontal micro-fin tubes (3성분 혼합냉매 R-407c의 수평 마이크로핀관내 응축압력강하에 관한 연구)

  • 정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.210-218
    • /
    • 1998
  • Experimental results for forced convection condensationof Refrigerant-22 and ternary Refrigerant-407c(HFC-32/125/134a 23/25/52 wt%) considered as a substitute R-22 inside horizontal micor-fin tubes are presented. The test section was horizontal double-tubed counterflow condenser with a length 4000 mm micro-fin tube having 9.53 mm OD., 0.2 mm fin height and 60 fins. The refrigerants R-22 and R-407c were cooled by a coolant circulated in a surrounding annulus. The range of parameters of mass velocity was varied from 102.1 to 301.0kg/($\textrm{m}^{2}.s$) with inlet quality 1.0. Both refrigerant R-22 and its alternative refrigerant R-407c were tested within the same range of parameters. At the given experimental conditions for R-22 and R-407c the pressure drops for R-407c were considerably higher than those for R-22 at micro-fin tubes. Over the mass velocity range tested the PF(penalty factor)was lower than the increasing ratio of heat transfer area by fins. Based on the data correlation was proposed for predicting the frictional pressure drops for R-22 and R-407c for a duration of condensation inside a horizontal micro-fin tube.

  • PDF

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

Development of Rotor Shaft Manufacturing Process using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Lee, N.K.;Park, H.C.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.266-270
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to material characteristics, such as, thermal conductivity and high temperature flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld parameters. FE simulation is performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.