• Title/Summary/Keyword: Friction-Factor Model

Search Result 250, Processing Time 0.037 seconds

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.

The Estimation and Application of Optimum Design Variables for Road Tunnel Ventilation System Based on Statistical Analysis (통계적 분석을 이용한 터널 환기시스템 적정설계변수의 산정 및 적용에 관한 연구)

  • 이보영;유용호;김진
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • In this study, the emission rate of pollutant was modified according to the published standards, and the distribution of pollutant concentration was analyzed for each vehicle velocity. This modified emission rate was applied to a model tunnel and it was proved that the required air quantity was reduced to 49%, compared to the PIARC method. From the simulation result, it was proved by using statistics that the most sensitive factor among them is the friction coefficient and it was modified to the value in the range of 0.018 to 0.021. It is also expected that the required air quantity can be decreased form 14.4% to 19.2% according as the coefficient is applied to the domestic model tunnels. In conclusion, it is proposed that the number of jet fans can be reduced and the annual operating cost can be curtailed as well.

Study on Relationship Between Geographical Convergence and Bottom Friction at the Major Waterways in Han River Estuary using the Tidal Wave Propagation Characteristics (조석 전파 특성을 활용한 한강하구 주요 수로의 지형학적 수렴과 바닥 마찰 간의 관계에 대한 연구)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.383-392
    • /
    • 2011
  • The basic research of the estuarine circulation at Gyeong-Gi bay has not been well studied up to now, although coastal development pressures have been continuously increased. To understand the oceanographic phenomena at the Han River estuary, it's essential to understand the propagation characteristic of tidal wave which is the strongest external forcing in this region. In this study, we investigate the tidal wave propagation characteristics along the 3 major channels using observation data and numerical model. It is found that 3 channels are all hyper-synchronous and the most important physical factor controlling the tidal wave propagation is topographical convergence of estuary shape and friction. The result of analytic solution at ideal channel considering the topographical convergence and friction show that the contribution of physical role of convergence and friction varies at 3 different channel. And the ratio of convergence and friction at Yeomha channel is four times larger than Seokmo channel. Because of this effect, the location of maximum amplitude at Yeomha channel is showed up downward than Seokmo channel. The ratio of decreasing amplitude and increasing phase per unit distance between stations is bigger than Seokmo channel. Although 3 major channel show a hyper-synchronous pattern, Yeomha shows more frictionally dominant channel and Seokmo channel is more dominantly affected by convergence effect.

Effects of Pile Diameters on Soil Plug Behavior of Open -Ended Steel Pipe Pile (말뚝직경 변화에 따른 개단강관말뚝의 관내토 거동특성)

  • Lee, Seung-Rae;Kim, Yeong-Sang;Jo, Seong-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.87-93
    • /
    • 1994
  • Factors which affect the capacity and the soil plug condition of an open-ended pile can be broadly divided into three categories:i.e., pile conditions, soil conditions and penetration methods. It has been found that the relative density and the horizontal stress have much effects on the soil plug behavior than other soil conditions. Also, it has been found that the pile diameter is the most important factor among pile conditions. However, a few investigations have been performed to account for both soil conditions and pile conditions. In this paper, a number of calibration chamber tests have been conducted with three different sized open-ended model piles. The model pile was driven into siliceous sand, with varying soil conditions, to clarify coupled effects of pile diameter and soil conditions on the plug behavior, the capacity, and the load trasfer mechanixm of soil plug. The model piles are composed of two stainless steel pipes so as to measure the plug capacity, the tip resistance, and the outside skin friction. separately.

  • PDF

Frictional Pressure Drop of a Capillary Tube Flow of Pure HFC Refrigerants and Their Mixtures (HFC 순수냉매 및 혼합냉매의 모세관내에서 마찰에 의한 압력강하)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.589-599
    • /
    • 1995
  • The frictional pressure drop of a capillary tube flow is experimentally investigated for pure refrigerants such as R32, R125, and R134a and refrigerant mixtures such as R32/R134a(30/70 by mass percent), R32/R125(60/40), R125/R134a(30/70), and R32/R125/R134a(23/25/52). The binary interaction parameters for the calculation of viscosities of refrigerant mixtures are found based upon the data in the open literature. Several homogeneous flow models predicting the viscosity of two-phase region are compared to select the best model. Cicchitti's equation is known to be the most adequate for the prediction of the viscosity for refrigerant mixtures, which is used in the analysis of adiabatic capillary flows. A model for the prediction of the frictional pressure drop of single and two-phase flow is developed for refrigerant mixtures in this study. This model may be used to design and analyze the performance of a capillary tube in the refrigerating system.

  • PDF

Analyzing the Spatial Centrality of Rural Villages for Green-Tourism using GIS and Social Network Analysis -Focusing on Rural Amenity and Human Resources- (GIS 및 사회네트워크 분석을 통한 농촌마을 관광중심성 분석 -농촌어메니티 자원 및 인적자원을 중심으로-)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Bae, Seung-Jong;Oh, Yun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.1
    • /
    • pp.47-59
    • /
    • 2009
  • The aim of this study is to analyze the green-tourism centrality considering spatial interaction using Gravity Model and social network method. The degree centrality and prestige centrality were applied as green-tourism centrality index. The rural amenity resources and human resources were counted as attraction factors, and a distance among villages was used as friction factor in gravity model. The weights of rural tourism amenity resources were calculated using the analytic hierarchy process(AHP) method and applied to evaluate green-tourism potentiality. The distance was measured with the shortest path among villages using geographic information system(GIS) network analysis. The spatial interaction from gravity model were employed as link weights between nodal points; a pair villages. Using the spatial interaction, the degree-centrality and prestige-centrality indices were calculated by social network analysis and demonstrated possibility of developing integrated green-tourism region centered on high centrality villages.

Study on mechanical behaviors of loose mortise-tenon joint with neighbouring gap

  • He, Jun-xiao;Wang, Juan;Yang, Qing-shan;Han, Miao;Deng, Yang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.509-521
    • /
    • 2021
  • The neighbouring gaps at the mortise-tenon joint in traditional timber structure, which leads to the complexity of the joint, are considered to impair the mechanical performance of the joint. In this paper, numerical simulation of loose joint was conducted to examine the deformation states, stress distributions, and bearing capacities, which was verified by full-scale test. On the basis of the experimental and numerical results, a simplified mechanics model with gaps has been proposed to present the bending capacity of the loose joint. Besides, the gap effects and parameter studies on the influences of tenon height, friction coefficient, elastic modulus and axial load were also investigated. As a result, the estimated relationship between moment and rotation angle of loose joint showed the agreement with the numerical results, demonstrating validity of the proposed model; The bending bearing capacity and rotational stiffness of loose joint had a certain drop with the increasing of gaps; and the tenon height may be the most important factor affecting the mechanical behaviors of the joint when it is subjected to repeated load; Research results can provide important references on the condition assessments of the existing mortise-tenon joint.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

Heat Transfer and Pressure Drop Characteristics of a Horizontal Channel Filled with Porous Media (다공성매질을 삽입한 수평채널의 열전달 및 압력강하 특성)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • Porous media have especially large surface area per volume, which contain complex fluid passage. If porous media can be applied to cool a CPU or an electronic device with large heat dissipation, it could result in heat transfer enhancement due to the enlargement of the heat transfer area and the flow disturbance. This study is aimed to identify the heat transfer and pressure drop characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed with the various heat flux, velocity and pore density conditions. Permeabilities, which is deduced from Non-Darcy flow model, become lower with increasing pore density. Nusselt number also decreases with higher pore density. High pore density with same porosity case shows higher pressure loss due to the increase of surface area per unit volume. The fiction factor decreases rapidly with increase of Reynolds number in Darcy flow region. However, it converges to a constant value of the Ergun coefficient in Non-Darcy flow region.

Comparison of steady and unsteady simulation methodologies for predicting no-load speed in Francis turbines

  • Hosseinimanesh, Hossein;Devals, Christophe;Nennemann, Bernd;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.155-168
    • /
    • 2015
  • No-load speed is an important performance factor for the safe operation of hydropower systems. In turbine design, the manufacturers must conduct several model tests to calculate the accurate value of no-load speed for the complete range of operating conditions, which are expensive and time-consuming. The present study presents steady and unsteady methods for calculating no-load speed of a Francis turbine. The steady simulations are implemented using a commercial flow solver and an iterative algorithm that relies on a smooth relation between turbine torque and speed factor. The unsteady method uses unsteady RANS simulations that have been integrated with a user subroutine to compute and return the value of runner speed, time step and friction torque. The main goal of this research is to evaluate and compare the two methods by calculating turbine dynamic parameters for three test cases consisting of high and medium head Francis turbines. Overall, the numerical results agreed well with experimental data. The unsteady method provided more accurate results in the opening angle range from 20 to 26 degrees. Nevertheless, the steady results showed more consistency than unsteady results for the three different test cases at different operating conditions.