• 제목/요약/키워드: Friction weld

검색결과 212건 처리시간 0.028초

접합시편의 고정위치에 따른 이종 알루미늄 합금의 마찰교반접합부특성 (Joint characteristics of dissimilar formed Al alloys with fixed location of welded specimen by friction stir welding)

  • 이원배;김종웅;연윤모;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.176-178
    • /
    • 2003
  • The weld zone of dissimilar formed Al alloy exhibited the complex structure of the two materials and mainly composed of the retreating side material. The mechanical properties were also depended on the dominant microstructure of the weld zone with welding conditions. The different mechanical properties of weld zone with welding conditions were related to the behavior of the precipitates of wrought Al alloy and Si particles of cast Al alloy. The higher mechanical properties of weld were acquired when relatively harder material, wrought Al alloy, was fixed at the retreating side.

  • PDF

Recent Corrosion Research Trends in Weld Joints

  • Kim, Hwan Tae;Kil, Sang Cheol;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.74-76
    • /
    • 2007
  • The increasing interest in the corrosion properties of weld joints in the corrosive environment is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency welding process to produce welds. Welding plays an important role in the fabrication of chemical plants, nuclear power plant, ship construction, and this has led to an increasing attention to the corrosion resistant weld joints. This paper covers a recent technical trends of welding technologies for corrosion resistance properties including the COMPENDEX DB analysis of welding materials, welding process, and welding fabrications.

Mg Alloy(AZ61) 마찰교반용접 조건에 따른 용접부의 온도와 기계적 특성변화 (Temperature and Mechanical Properties of Welded Joints Under Friction Stir Welding Conditions of Mg Alloy (AZ61))

  • 이우근;김정석;선승주
    • 한국생산제조학회지
    • /
    • 제26권4호
    • /
    • pp.378-386
    • /
    • 2017
  • Friction stir welding was performed using six welding conditions to evaluate the mechanical properties and microstructure of the welded zone based on its temperature change in the extruded plate of magnesium alloy AZ61. The welded zone temperature was measured using a thermocouple, and the maximum temperature ranges for the advancing and retreating sides were approximately $210-315^{\circ}C$ and $254-339^{\circ}C$, respectively. Depending on the welding conditions, a temperature difference of more than $100^{\circ}C$ was observed. In addition, the maximum yield strength and maximum tensile strength of the welded component was 84.4% and 96.9%, respectively, of those of the base material. For the temperatures exceeding $300^{\circ}C$, oxidation defects occurred in the weld zone, which decreased the mechanical strength of the weld zone. The microstructure and texture confirmed that fracture occurred because of the grain size deviation of the welding tool and the severe anisotropy of the texture of the welded joints.

관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響) (Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630)

  • 오세규
    • 대한조선학회지
    • /
    • 제9권2호
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접 특성에 미치는 업셋압력의 영향에 관한 연구 (Effects of Upset Pressure on Weldability in the Friction Welding of Cu to Cu-W Sintered Alloy)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • 제17권5호
    • /
    • pp.69-76
    • /
    • 1999
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of upset pressure on friction weldability. Under the condition of friction time 0.8sec, upset pressure 150MPa, the tensile strength and Charpy impact value of the friction welded joint were 336MPa, $400KJ/m^2$ respectively. And highest temperature of the weld measured was below $800^{circ}K$ which is very lower than melting point of Cu($1356^{circ}K$). Under the same conditions, W grains picked up in Cu matrix from Cu-W profitably affected on these mechanical fracture, and were dispersed in Cu by plastic flow during brake time.

  • PDF

밀링을 이용한 AI합금의 마찰 교반용접용 최적공구형상 및 치수개발에 관한 연구 (A Development of Optimizing Tools for Friction Stir Welding with 2 mm Thick Aluminum Alloy using a Milling Machine)

  • 장석기;신상현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.791-796
    • /
    • 2001
  • Friction stir welding is a solid phase welding process that does not melt the metal when welding. The FSW is the most remarkable and potentially useful new welding technique that is still in development. Friction stir butt welding process on 2 mm thick Al 1050 plates by utilizing a milling machine was experimentally studied. With the optimized heat generating tool welds could be achieved that are void and crack free. It was found that the friction stir welded tensile test specimens failed in the HAZ outside of the weld metal, and that the tensile strength was above 90% of that of the base metal.

  • PDF

Grain Refinement and Phase Transformation of Friction Welded Carbon Steel and Copper Joints

  • Lee, W.B.;Lee, C.Y.;Yeon, Y.M.;Kim, K.K.;Jung, S.B
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.46-52
    • /
    • 2003
  • The refinement of microstructure and phase transformation near the interface of pure copper/carbon steel dissimilar metals joints with various friction welding parameters have been studied in this paper. The microstructure of copper and carbon steel joints were changed to be a finer grain compared to those of the base metals due to the frictional heat and plastic deformation. The microstructure of copper side experienced wide range of deformed region from the weld interface and divided into very fine equaxied grains and elongated grains. Especially, the microstructures near the interface on carbon steel were transformed from ferrite and pearlite dual structure to fine ferrite, grain boundary pearlite and martensite due to the welding thermal cycle and rapid cooling rate after welding. These microstructures were varied with each friction welding parameters. The recrystallization on copper side is reason for softening in copper side and martensite transformation could explain the remarkable hardening region in carbon steel side.

  • PDF