• Title/Summary/Keyword: Friction properties

Search Result 1,518, Processing Time 0.026 seconds

Flow Properties of Water Additive Corn-Cob-Mix for Handling by Pump (수분(水分)첨가된 옥수수(Corn-Cob-Mix)의 펌프 운송(運送) 시(時)의 유체성질(流體性質) 구명(究明))

  • Oh, I.H.;Heege, H.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • The flow properties of water added com-cob-mix(CCM) were studied in order to provide basic information for designing its pumping system. For the study, a model system similar to actual situation was constructed. From the experiment, it can be concluded that the flow properties of the water added CCM has close relationship with its moisture content as follows; 1. The pressure drop caused by friction was very low when the moisture content of water added CCM was more than 70%. However, when the moisture content of the material is about 60%, the pressure drop increases up to 10 kPa/m at low pumping speed, and 20 kPa/m at high pumping speed, respectively. 2. The water added CCM having about 65% moisture content showed pseudo-plastic flow characteristics. 3. As the moisture content of the material decreases, the shear stress increases more rapidly than the shear rate does. Finally, below approximately 60% moisture, the shear stress becomes a linear relationship with the shear rate. 4. It was possible to pump the material having the moisture content down to 58% through a pipe having 80 mm diameter by a pump operating at 234 rpm. However, by either increasing the diameter of the pipe or decreasing the pumping speed, it can be possible to pump the material having lower moisture content than 55%.

  • PDF

A study on lubrication Properties of a Dimple Pattern using an Average Flow Analysis with a Contact Model of Asperities (돌기 접촉 모델과 평균 유동 분석을 이용한 딤플 패턴의 윤활 특성에 관한 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Li, Liang;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.41-49
    • /
    • 2016
  • To evaluate lubrication properties by surface roughness under boundary and mixed lubrication, a new approach is suggested by both asperity flow and contact with stochastic characteristics. Many researchers already have studied the effect of surface roughness on flow. But, it has become important to research of the phenomenon of asperities contact in surfaces because the growth of asperities contact area under heavy load conditions. In this paper, flow factors in the average flow model derived by Patir and Cheng were used, and a multi-asperity contact model was included to calculate lubrication properties of a surface with a randomly generated rough surface. A numerical analysis using the average Reynolds equation with both the average flow model and the asperity contact model was conducted, and the results were compared with those from previous research. The results showed that the influence of asperities on lubrication and the friction coefficient changed rapidly on application of contact model.

Development of the formulation and the process of DXD-19 sheet explosive (판상 화약 DXD-19 조성 및 성형 공정개발)

  • Cheun Young Gu;Lee Jin Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.129-139
    • /
    • 2004
  • DXD-19 is a flexible sheet explosive, which is a new polymer-bonded explosives(PBX's). DXD-19 is relatively insensitive and can be extruded into various configurations to be applied to munitions. A typical application includes multi-point initiation for the warhead, cutting/severance devices and transfer lines. The DXD-19 composition employs a binder system derived from the thermoplastic elastomer(HyTemp 4454) containing $5\%$ OH terminated with isocyanate curable for increasing mechanical properties. The use of an elastomer CAB increases its mechanical properties and the use of an energetic plasticizer BDNPF/BDNPA(F/A) improves the process ability as well as energy contents. The composition of the extruded DXD-19 formulation is formed $\%$ weight of $PETN/HyTemp/ATEC/(F/A)/CAB=72\~73/12\~13/6\~7/6\~7/1\~2$. Our safety tests of DXD-19 shows Insensitivity to an impact test and friction test, good thermal stability and excellent mechanical properties.

End Use Tactile Property of the Split-type Nylon/PET Microfiber Fabrics (마찰과 세탁에 의한 극세섬유 직물의 표면과 촉감변화에 관한 연구)

  • 오경화;윤재희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.539-545
    • /
    • 2004
  • In this study, the effect of washing, bleaching, and abrasion on tactile and the water absorption properties of the split-type Nylon/Polyester (N/P) microfiber pile-knit was investigated under various enduse conditions. We examined the water absorption and surface properties of PET microfiber which will be very useful in the future. We also studied the variations of their performance during usage caused by friction and repeated washing, regard to all kinds of physical, chemical changes which will appear while using those textiles. Progress in further splitting of PET microfiber fabric is observed with increases in the number of washing and bleaching cycles, and treatment temperature. Initial water absorption (%) was increased with progress in splitting, which provided efficient capillary channel. Surface properties were varied with additional splitting by washing and abrasion. Formation of pilling and splitting by abrasion increase surface roughness, diminishing tactile property, and reduced water absorption property. The current results from this study is expected to provide the appropriate washing management guide to consumers, and to inform end-use performance of product to a producer for improving product quality.

The Dyeing Properties and Antibacterial Activity of Fabrics Dyed with Camomile Extract (캐모마일 추출액 염색직물의 염색성 및 항균성)

  • Park Young-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1188-1195
    • /
    • 2005
  • The effects on the dyeing properties and antibacterial activity of fabrics dyed with camomile extract were analyzed. As the results obtained, the surface color of all the dyed fabric was tinged with the yellow of the bright color tone. In the test results of durability, the durability to sunlight of the dyed fabric of both cotton and silk showed from 2nd grade to 3rd grade. The durability to laundry of the dyed fabric of both cotton and silk showed relatively higher grade of 4th-5th. The durability to synthetic sweat of all the fabrics except fer the dyed fabric mordanted with $CuSO_4{\cdot}5H_2O$ showed the relatively good result of 3rd- 5th grade. The durability to friction and dry cleaning of all the dyed fabrics showed the excellent result of 4th-5th grade. In the test results of antibiosis, the dyed fabric of cotton showed the decrease rate of $50\%$ to Staphylococcus aureus and the decrease rate of $70\%$ to Klebsiella pneumoniae. The dyed fabric of silk showed the significant effect with Microscopic growth to the mold bacillus Aspergillus niger.

Characteristics of Meta-aramid Fabrics Coated with Slurry of Nanoscale SiC Particles (나노 탄화규소(SiC) 슬러리로 코팅된 메타-아라미드 직물의 특성)

  • Park, Jong Hyeon;Lee, Sun Young;Won, Jong Sung;Lee, Eung Bo;Kim, Eui Hwa;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • Most of high performance fabrics for the car racing protective clothing have been developed to have thermal resistance, flame retardant property, impact resistance and anti-frictional properties to protect the racer from the crucial accident. In this study, the meta-aramid fabric, which has inherent flame retardant, was coated with nanoparticles of SiC to enhance the impact resistance and anti-friction properties. Uniform coating of the nanoparticles onto the fabrics was obtained by using tape casting method. As the experimental parameters, size and content of the SiC nanoparticle were varied with the coating conditions of the fabric surface. The effects of the nanoparticle coating on the properties of meta-aramid fabric were examined with various instrumental analyses such as SEM, tensile strength and abrasion test.

Analysis of forced convective laminar film boiling heat transfer on vertical surface (垂直平板에서의 强制對流 膜沸騰 流動의 熱傳達解析)

  • 이규식;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.425-436
    • /
    • 1987
  • Accurate predictions of heat transfer coefficient of vertical laminar film-boiling are very important in many engineering applications. There are many predictions, however they are not exact as yet, since they have used the assumption of constant thermodynamic properties in the analysis. In this paper, heat transfer of vertical film boiling was analysized by Runnge Kutta method using veriable thermodynamic properties. 1/4 interval method was exployed for the prediction of unknown wall boundary condition. Numerical computations were performed with varying the wall temperature and the free stream velocity of liquid. Results show that assumption of constant thermodynamic properties induced considerable error in predicting the heat transfer coefficient, friction factor, film thickness, and critical length for transition to turbulent flow. Comparision of the predicted heat transfer coefficient of present analysis with that from Bromley's correlation shows that the use of general latent heat in Bromely equation instead of modified latent heat is more desireable since it makes the coefficient of Bromley equation into constant.

Experimental investigation on self-compacting concrete reinforced with steel fibers

  • Zarrin, Orod;Khoshnoud, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.133-151
    • /
    • 2016
  • Self-Compacting Concrete (SCC) has been originally developed in Japan to offset a growing shortage of skilled labors, is a highly workable concrete, which is not needed to any vibration or impact during casting. The utilizing of fibers in SCC improves the mechanical properties and durability of hardened concrete such as impact strength, flexural strength, and vulnerability to cracking. The purpose of this investigation is to determine the effect of steel fibers on mechanical performance of traditionally reinforced Self-Competing Concrete beams. In this study, two mixes Mix 1% and Mix 2% containing 1% and 2% volume friction of superplasticizer are considered. For each type of mixture, four different volume percentages of 60/30 (length/diameter) fibers of 0.0%, 1.0%, 1.5% and 2% were used. The mechanical properties were determined through compressive and flexural tests. According to the experimental test results, an increase in the steel fibers volume fraction in Mix 1% and Mix 2% improves compressive strength slightly but decreases the workability and other rheological properties of SCC. On the other hand, results revealed that flexural strength, energy absorption capacity and toughness are increased by increasing the steel fiber volume fraction. The results clearly show that the use of fibers improves the post-cracking behavior. The average spacing of between cracks decrease by increasing the fiber volume fraction. Furthermore, fibers increase the tensile strength by bridging actions through the cracks. Therefore, steel fibers increase the ductility and energy absorption capacity of RC elements subjected to flexure.

Study of Pd Target Power Effects on Physical Characteristics of Pd-Doped Carbon Thin Films Using Dual Magnetron Sputtering Method (듀얼 마그네트론 스퍼터링 법으로 제조된 Pd-Doped Carbon 박막의 물리적 특성에서 Pd 타겟 전력의 영향에 대한 연구)

  • Choi, Young-Chul;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.488-493
    • /
    • 2022
  • Generally, diamond-like carbon films (a-C:H, DLC) have been shown to have a low coefficient of friction, a high hardness and a low wear rate. Pd-doped C thin film was fabricated using a dual magnetron sputtering with two targets of graphite and palladium. Graphite target RF power was fixed and palladium target RF power was varied. The structural, physical, and surface properties of the deposited thin film were investigated, and the correlation among these properties was examined. The doping ratio of Pd increased as the RF power increased, and the surface roughness of the thin film decreased somewhat as the RF power increased. In addition, the hardness value of the thin film increased, and the adhesive strength was improved. It was confirmed that the value of the contact angle indicating the surface energy increases as the RF power increases. It was concluded that the increase in RF power contributed to the improvement of the physical properties of Pd-doped C thin film.

Effect of bound water on mechanical properties of typical subgrade soils in southern China

  • Ding, Le;Zhang, Junhui;Deng, Zonghuang
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • From the effect of bound water, this study aims to seek the potential reasons for difference of mechanical experiment results of subgrades soils. To attain the comparatively test condition of bound water, dry forming (DF) and wet forming (WF) were used in the specimen forming process before testing, series of laboratory tests, i.e., CBR tests, direct shear tests and compaction tests. The measured optimal moisture contents, maximum dry densities, CBR, cohesion c, and internal friction angle 𝜑 were given contrastive analysis. Then to detect the adsorptive bound water in the subgrade soils, the thermal gravimetric and differential scanning calorimetry (TG-DSC) test were employed under different heating rates. The free water, loosely bound water and tightly bound water in soils were qualitatively and quantitatively analyzed. It was found that due to the different dehydration mechanics, the lost bound water in DF and WF process show their own characteristics. This may lead to the different mechanical properties of tested soils. The clayey particles have a great influence on the bound water adsorbed ability of subgrade soils. The more the clay content, the greater the difference of mechanical properties tested between the two forming methods. Moreover, in highway construction of southern China, the wet forming method is recommended for its higher authenticity in simulating the subgrade filed humidity.